Skip to main content Accessibility help
×
×
Home

Dualities for some De Morgan algebras with operators and Lukasiewicz algebras

  • Roberto Cignoli (a1) and Marta S. De Gallego (a1)

Abstract

Algebras (A, ∧, ∨, ~, γ, 0, 1) of type (2,2,1,1,0,0) such that (A, ∧, ∨, ~, γ 0, 1) is a De Morgan algebra and γ is a lattice homomorphism from A into its center that satisfies one of the conditions (i) a ≤ γa or (ii) a ≤ ~ a ∧ γa are considered. The dual categories and the lattice of their subvarieties are determined, and applications to Lukasiewicz algebras are given.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dualities for some De Morgan algebras with operators and Lukasiewicz algebras
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dualities for some De Morgan algebras with operators and Lukasiewicz algebras
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dualities for some De Morgan algebras with operators and Lukasiewicz algebras
      Available formats
      ×

Copyright

References

Hide All
Balbes, R. and Dwinger, P. (1974), Distributive lattices (University of Missouri Press, Columbia Missouri).
Bialynicki-Birula, A. and Rasiowa, H. (1957), ‘On the representation of quasi-Boolean algebras’, Bull. Acad. Polon. Sci. CI III 5, 259261.
Cignoli, R. (1970), Moisil algebras (Notas de Lógica Matem´tica No. 27, Universidad Nacional del Sur, Bahia Blanca).
Cignoli, R. (1974), Topological representation of Lukasiewicz and post algebras (Notas de Lógica Matemática No. 33, Universidad Nacional del Sur, Bahia Blanca).
Cignoli, R. (1979), ‘Coproducts in the categories of Kleene and Three-valued Lukasiewicz algebras’, Studia Logica 38, 237245.
Cignoli, R. and de Gallego, M. S. (1981), ‘The lattice structure of some Lukasiewicz algebras’, Algebra Universalis 13, 315328.
Cornish, W. H. (1975), ‘On H. Priestley's dual of the category of bounded distributive lattices’, Mat. Vestnik 12 (27), 329332.
Cornish, W. H. and Fowler, P. R. (1977), ‘Coproducts of De Morgan algebras’, Bull. Austral. Math. Soc. 16, 113.
Cornish, W. H. and Fowler, P. R. (1979), ‘Coproducts of Kleene algebras’, J. Austral. Math. Soc. Ser A 27, 209220.
Davey, B. A. (1978), ‘Subdirectly irreducible distributive double p-algebras’, Algebra Universalis 8, 7388.
Davey, B. A. (1979), ‘On the lattice of subvarieties’, Houston J. Math. 5, 183192.
Jónson, B. (1967), ‘Algebras whose congruence lattices are distributive’, Math. Scand. 21, 110121.
Katrinάk, T. (1974), ‘Injective double Stone algebras’, Algebra Universalis 4, 259267.
Priestley, H. A. (1970), ‘Representation of distributive lattices by means of ordered Stone spaces’, Bull. London. Math. Soc. 2, 186190.
Priestley, H. A. (1972), ‘Ordered topological spaces and the representation of distributive lattices’, Proc. London. Math. Soc. (3) 24, 507530.
Priestley, H. A. (1974), ‘Stone lattices: a topological approach’, Fund. Math. 84, 127143.
Priestley, H. A. (1975), ‘The construction of spaces dual to pseudocomplemented distributive lattices’, Quart. J. Math. Oxford Ser. 26, 215228.
Varlet, J. (1968), ‘Algébres de Lukasiewicz trivalentes’, Bull. Soc. Roy. Sci. Liège 36, 399408.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed