Skip to main content Accessibility help
×
Home

Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer

  • N. Chakravarty (a1), M. K. Semwal (a1), G. Trivedi (a1), V. Suhag (a1), M. Jain (a1), N. Sharma (a1) and R. S. Vashisth (a1)...

Abstract

Aim:

To study 2D and 3D dosimetric values for bladder and rectum, and the influence of bladder volume on bladder dose in high dose rate (HDR) intracavitary brachytherapy (ICBT). The large patient data incorporated in this study would better represent the inherent variations in many parameters affecting dosimetry in HDR-ICBT.

Material and Methods:

We prospectively collected data for 103 consecutive cervical cancer patients (over 310 HDR fractions) undergoing CT-based HDR-ICBT at our centre. Correlation among bladder and rectum maximum volume doses and corresponding International Commission on Radiation Units and Measurement (ICRU) point doses were estimated and analysed. Impact of bladder volume on bladder maximum dose was assessed.

Results:

The ICRU point doses to bladder and rectum varied from the volumetric doses to these organs. Further, bladder volume poorly correlated with bladder maximum dose for volume variations encountered in the clinical practice at our centre.

Findings:

ICRU point doses to bladder and rectum are less likely to correlate with long-term toxicities to these organs. Further, in clinical practice where inter-fraction bladder volume does not vary widely there is no correlation between bladder volume and bladder dose.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: Dr M. K. Semwal, Radiation Oncology Centre, Army Hospital (R&R), Delhi Cantonment, New Delhi 110010, India. Tel: +91-11-25691181. Fax: +91-11-25693490. E-mail: manojsemwal@yahoo.co.in

References

Hide All
1. Lindsey, A T, Farhad, I, Rebecca, L S, Elizabeth, M W, Ahmedin, J. Global cancer in women: burden and trends. Cancer Epidemiol Biomarkers Prev 2017; 26 (4): 444457. doi:10.1158/1055-9965.EPI-16-0858.
2. Sreedevi, A, Javed, R, Dinesh, A. Epidemiology of cervical cancer with special focus on India. Int J Womens Health 2015; 7: 405414.
3. Green, J A, Kirwan, JM, Tierney, J F et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. The Lancet 2001; 358: 781786.
4. National Comprehensive Cancer Network. Clinical practice guidelines in oncology: cervical cancer (Version 1.2017). http://www.nccn.org. Accessed on 27th February 2017.
5. Eifel, P J, Thomas, Jr , W W, Smith, T L, Morris, M, Oswald, M J. The relationship between brachytherapy dose and outcome in patients with bulky endocervical tumors treated with radiation alone. Int J Radiat Oncol Biol Phys 1994; 28: 113118.
6. Ito, H, Kutuki, S, Nishiguchi, I et al. Radiotherapy for cervical cancer with high-dose rate brachytherapy—correlation between tumor size, dose and failure. Radiother Oncol 1994; 31: 240247.
7. Pinkawa, M, Pursch-Lee, M, Asadpour, B et al. Image-guided radiotherapy for prostate cancer. Strahlenther Onkol 2008; 184: 679685.
8. Gandhi, A K, Sharma, D N, Julka, P, Rath, G K. Attitude and practice of brachytherapy in India: a study based on the survey amongst attendees of Annual Meeting of Indian Brachytherapy Society. J Contemp Brachytherapy 2015; 7 (6): 462468. doi:10.5114/jcb.2015.55666.
9. ICRU Report No. 38. Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology. Bethesda, MD: International Commission on Radiation Units and Measurements, 1985.
10. ICRU Report No. 89. Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix. J ICRU. 2013; 13(1&2). International Commission on Radiation Units and Measurements. Oxford: Oxford University Press.
11. Fellner, C, Pötter, R, Knocke, T H, Wambersie, A. Comparison of radiography- and computed tomography-based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol 2001; 58: 5362.
12. Kim, R Y, Shen, S, Duan, J. Image-based three-dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: dose-volume histograms of the bladder, rectum, sigmoid colon, and small bowel. Brachytherapy 2007; 6: 187194.
13. Madan, R, Pathy, S, Subramani, V, et al. Three dimensional computed tomography based dose-volume parameters for high-dose-rate intracavitary brachytherapy of cervical cancer: a prospective study. Asian Pac J of Cancer Prev 2014; 15: 47174721.
14. FIGO committee on gynecologic oncology. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynecol Obstet 2009; 105: 103104.
15. Karnofsky, D A, Burchenal, J H. The evaluation of chemotherapeutic agents in cancer. In: MacLeod, C M (ed). Evaluation of Chemotherapeutic Agents. New York: Columbia University Press, 1949: 191205.
16. Onal, C, Arslan, G, Topkan, E, et al. Comparison of conventional and CT-based planning for intracavitary brachytherapy for cervical cancer: target volume coverage and organs at risk doses. J Exp Clin Cancer Res 2009; 28: 95. doi:10.1186/1756-9966-28-95.
17. Zwahlen, D, Jezeioranski, J, Chan, P, et al. Magnetic resonance imaging-guided intracavitary brachytherapy for cancer of the cervix. Int J Radiat Oncol Biol Phys 2009; 74: 11571164.
18. Rangarajan, R, Subramanian, S, Gopalakrishnan, K. Comparison between DVH-based doses and ICRU point-based doses to the rectum and the bladder using CT-based high-dose rate brachytherapy to the cervix. Med Dosim 2018; 43: 276283.
19. van den Bergh, F, Meertens, H, Moonen, L, van Bunningen, B, Blom, A. The use of transverse CT image for the estimation of the dose given to the rectum in intracavitary brachytherapy for carcinoma of the cervix. Radiother Oncol 1998; 47: 8590.
20. Barendsen, GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 1982; 8: 19811997.
21. Mahantshetty, U, Shetty, S, Majumdar, D, et al. Optimal bladder filling during high-dose-rate intracavitary brachytherapy for cervical cancer: a dosimetric study. J Contemp Brachytherapy 2017; 9: 112117.
22. Sun, L M, Huang, H Y, Huang, E Y, et al. A prospective study to assess the bladder distension effects on dosimetry in intracavitary brachytherapy of cervical cancer via computer tomography-assisted techniques. Radiother Oncol 2005; 77: 7782.
23. Yamashita, H, Nakagawa, K, Okuma, K, et al. Correlation between bladder volume and irradiated dose of small bowel in CT-based planning of intracavitary brachytherapy for cervical cancer. Jpn J Clin Oncol 2012; 42: 302308.

Keywords

Image-based 3D dosimetric studies with high dose rate intracavitary brachytherapy of cervical cancer

  • N. Chakravarty (a1), M. K. Semwal (a1), G. Trivedi (a1), V. Suhag (a1), M. Jain (a1), N. Sharma (a1) and R. S. Vashisth (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed