Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T03:12:50.221Z Has data issue: false hasContentIssue false

Whistler wave emission by a modulated electron beam injected into a plasma column surrounded by a uniform medium

Published online by Cambridge University Press:  01 December 2007

C. KRAFFT
Affiliation:
Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex, France
T. M. ZABORONKOVA
Affiliation:
Department of Applied Physics, Technical University of Nizhny Novgorod, 24 Minin Street, Nizhny Novgorod 603950, Russia

Abstract

The efficiency of whistler wave radiation by a density modulated and thin electron beam of finite length injected parallel with respect to the constant ambient magnetic field into a cylindrical plasma column surrounded by a uniform isotropic medium and aligned along the magnetic field is studied. A rigorous analytical derivation of the wave fields excited by the beam in the plasma column is presented. The time-averaged power radiated by the beam at the modulation frequency is determined. In particular, numerical calculations performed for physical conditions relevant to laboratory magnetized discharge plasmas show that, in the presence of a plasma column, the power lost by the modulated beam can be efficiently enhanced owing to resonant Cherenkov excitation of guided whistler modes at the beam modulation frequency.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Harker, K. J. and Banks, P. M. 1985 Radiation from long pulse train electron beams in space plasma. Planet. Space Sci. 33, 953.CrossRefGoogle Scholar
[2]Harker, K. J. and Banks, P. M. 1987 Near fields in the vicinity of pulsed electron beam in space. Planet. Space Sci. 35, 11.CrossRefGoogle Scholar
[3]Le Quéau, D., Pellat, R. and Saint-Marc, A. 1981 Electrostatic instabilities of a finite electron beam propagating in a cold magnetized plasma. Phys. Rev. A 24, 448.CrossRefGoogle Scholar
[4]Lavergnat, J., Le Quéau, D., Pellat, R. and Roux, A. 1982 Nonlinear radiation by an electron beam in the whistler range: a tentative theoretical model. Phys. Fluids 25, 1073.CrossRefGoogle Scholar
[5]Lavergnat, J., Lehner, T. and Matthieussent, G. 1984 Coherent spontaneous emission from a modulated beam injected in a magnetized plasma. Phys. Fluids 27, 1632.CrossRefGoogle Scholar
[6]Lundin, B., Chmyrev, V., Krafft, C. and Matthieussent, G. 1994 VLF emission produced by a rarefied electron beam during active experiments in the Earth ionosphere: conditions of observation of the emission. J. Geophys. Res. 99, 14987.CrossRefGoogle Scholar
[7]Lundin, B., Krafft, C. and Matthieussent, G. 1995 Whistler emissions produced by modulated electron beams injected into the ionosphere. J. Geophys. Res. 100, 3703.CrossRefGoogle Scholar
[8]Lundin, B. and Krafft, C. 1999 Emission of a bounded nonmonoenergetic electron beam injected in the ionosphere. J. Geophys. Res. 104, 143.CrossRefGoogle Scholar
[9]Volokitin, A., Krafft, C. and Matthieussent, G. 1997 Whistler waves emission by a modulated electron beam: nonlinear theory. Phys. Plasmas 4, 4126.CrossRefGoogle Scholar
[10]Krafft, C. and Volokitin, A. 1998 Nonlinear interaction of whistler waves with a modulated thin electron beam. Phys. Plasmas 5, 4243.CrossRefGoogle Scholar
[11]Krafft, C., Volokitin, A. and Flé, M. 2000 Nonlinear electron beam interaction with a whistler wave packet. Phys. Plasmas 7, 4423.CrossRefGoogle Scholar
[12]Volokitin, A. and Krafft, C. 2000 Dynamically stable electron bunches in beam interaction with an electromagnetic wave packet. JETP Lett. 71, 262.CrossRefGoogle Scholar
[13]Volokitin, A. and Krafft, C. 2001 Electron beam interaction with lower hybrid waves at Cherenkov and cyclotron resonances. Phys. Plasmas 8, 3748.CrossRefGoogle Scholar
[14]Volokitin, A. and Krafft, C. 2001 Spiral electron beam interaction with whistler waves at cyclotron resonances. Phys. Plasmas 8, 4960.CrossRefGoogle Scholar
[15]Krafft, C. and Volokitin, A. 2003 Interaction of a wave packet with a thin electron beam spiraling in a magnetized plasma. Phys. Plasmas 10, 3093.CrossRefGoogle Scholar
[16]Krafft, C., Lundin, B. and Volokitin, A. 2006 Interaction of electromagnetic waves with a radially bounded electron beam. J. Plasma Phys. 72, 11.CrossRefGoogle Scholar
[17]Kudrin, A. V., Lyakh, M. Yu., Zaboronkova, T. M. and Krafft, C. 2002 Whistler wave emission from a modulated electron beam injected in a cylindrical duct with enhanced plasma density. Phys. Plasmas 9, 1401.CrossRefGoogle Scholar
[18]Zaboronkova, T. M., Krafft, C., Kudrin, A. V. and Lyakh, M. Yu. 2005 Whistler wave emission from a modulated electron beam in a collisional magnetoplasma in the presence of a density duct. Radiophys. Quant. Electron. 48, 650.CrossRefGoogle Scholar
[19]Kudrin, A. V., Lyakh, M. Yu., Zaboronkova, T. M. and Krafft, C. 2001 Electromagnetic wave excitation by a modulated electron beam injected in a anisotropic plasma channel. In Day on Diffraction 2001 (ed. Andronov, I. V.). St. Petersburg: St. Petersburg State University, p. 291.Google Scholar
[20]Zaboronkova, T. M. and Krafft, C. 2006 Radiation of whistler-band waves by a spiral electron beam in magnetoactive plasma in the presence of a density duct. J. Comm. Tech. Electr. 51, 642.CrossRefGoogle Scholar
[21]Zaboronkova, T. M., Kostrov, A. V., Kudrin, A. V., Tikhonov, S. V., Tronin, A. V., Shaykin, A. A. 1992 Channeling of waves in the whistler frequency range within nonuniform plasma structures. Sov. Phys. J. Exp. Theor. Phys. 75, 625.Google Scholar
[22]Kostrov, A. V., Kudrin, A. V., Kurina, L. E., Luchinin, G. A., Shaykin, A. A. and Zaboronkova, T. M. 2000 Whistlers in thermally generated ducts with enhanced plasma density: excitation and propagation. Phys. Scripta 62, 51.CrossRefGoogle Scholar
[23]Vdovichenko, I. A., Markov, G. A., Mironov, V. A. and Sergeev, A. M. 1986 Ionizational self-ducting of whistlers in a plasma. JETP Lett. 44, 275.Google Scholar
[24]Kudrin, A. V., Kurina, L. E. and Markov, G. A. 1997 Ionization self-channeling of whistler waves in a collisional magnetized plasma. J. Exp. Theor. Phys. 85, 697.CrossRefGoogle Scholar
[25]Golubyatnikov, G. Yu., Egorov, S. V., Eremin, B. G., Litvak, A. G., Strikovskii, A. V., Tolkacheva, O. N. and Chugunov, Yu. V. 1995 Lower-hybrid breakdown of gas in the field of a current-carrying loop in a plasma-filled magnetic confinement system. J. Exp. Theor. Phys. 80, 234.Google Scholar
[26]Sugai, H., Maruyama, M., Sato, M. and Takeda, S. 1978 Whistler wave ducting caused by antenna actions. Phys. Fluids 21, 690.CrossRefGoogle Scholar
[27]Agafonov, Yu. N., Bazhanov, V. S., Isyakaev, V. Ya., Markov, G. A., Pokhunkov, A. A., Chugunov, Yu. V. and Kulistikov, S. A. 1990 Stimulated emission of energetic particles by plasma-wave discharge in the polar ionosphere. JETP Lett. 52, 530.Google Scholar
[28]Markov, G. A. 1988 Observation of resonant autotuning of a magnetic antenna by rf-discharge plasmas. Sov. J. Plasma Phys. 14, 641.Google Scholar
[29]Pellat, R., Singh, R. P. and Lavergnat, J. 1973 Effet du front d'un faisceau d'électrons sur l'émission Cherenkov cohérente. C. R. Acad. Sci: Paris B 276, 685.Google Scholar
[30]Cartwright, D. R. and Kellogg, P. J. 1974 Observations of radiation from an electron beam artificially injected into the ionosphere. J. Geophys. Res. 79, 1439.CrossRefGoogle Scholar
[31]Alekhin, Ju. K. and Karpman, V. I. 1973 On Cherenkov radiation by electron beam injected into the ionosphere. Cosmic Electro. 3, 406.Google Scholar
[32]Lavergnat, J. 1982 The French–Soviet experiment ARAKS: main results. In Artificial Particle Beams in Space Plasmas Studies (ed. Grandal, B.). New York: Plenum Press.Google Scholar
[33]Krafft, C. et al. 1994 Whistler emission by a modulated electron beam. Phys. Rev. Lett. 72, 649.CrossRefGoogle ScholarPubMed
[34]Starodubtsev, M. and Krafft, C. 1999 Resonant cyclotron emission of whistler waves by a modulated electron beam. Phys. Rev. Lett. 83, 1335.CrossRefGoogle Scholar
[35]Starodubtsev, M., Krafft, C., Thévenet, P. and Kostrov, A. 1999 Whistler wave emission by a modulated electron beam through transition radiation. Phys. Plasmas 6, 1427.CrossRefGoogle Scholar
[36]Starodubtsev, M., Krafft, C., Lundin, B. and Thévenet, P. 1999 Resonant Cherenkov emission of whistlers by a modulated electron beam. Phys. Plasmas 6, 2862.CrossRefGoogle Scholar
[37]Starodubtsev, M. and Krafft, C. 1999 Whistler excitation by short current pulses in a magnetoplasma. Phys. Plasmas 6, 2598.CrossRefGoogle Scholar
[38]Starodubtsev, M. and Krafft, C. 2000 Whistler emission through transition radiation by a modulated electron beam spiralling in a magnetoplasma. J. Plasma Phys. 63, 285.CrossRefGoogle Scholar
[39]Krafft, C. and Starodubtsev, M. 2002 Whistler excitation by electron beams in laboratory plasmas. Planet. Space Sci. 50 (ER2), 129.CrossRefGoogle Scholar
[40]Stenzel, R. L. and Urrutia, J. M. 1990 Force-free, electromagnetic pulses in a laboratory plasma. Phys. Rev. Lett. 65, 2011.CrossRefGoogle Scholar
[41]Stenzel, R. L. and Golubiatnykov, G. Yu. 1993 Cyclotron harmonic lines in the thermal magnetic fluctuations spectrum of spiraling electrons in plasmas. Phys. Fluids B 5, 3789.CrossRefGoogle Scholar
[42]Katin, I. V. and Markov, G. A. 1999 Wave plasma diagnostic with the help of dielectric waveguides. Radiophys. Quant. Electron. 42, 215.CrossRefGoogle Scholar
[43]Ginzburg, V. L. 1970 The Propagation of Electromagnetic Waves in Plasmas. Oxford: Pergamon Press.Google Scholar
[44]Kondrat'ev, I. G., Kudrin, A. V. and Zaboronkova, T. M. 1999 Electrodynamics of Density Ducts in Magnetized Plasmas. Amsterdam: Gordon and Breach.Google Scholar
[45]Vorob'ev, N. F. and Rukhadze, A. A. 1994 Excitation of a helicon in a plasma cylinder by surface current sources. Plasma Phys. Rep. 20, 955.Google Scholar
[46]Kudrin, A. V., Eskin, V. A., Lyakh, M. Yu. and Zaboronkova, T. M. 2005 Damping of whistler modes guided by a lossy anisotropic plasma cylinder. In Day on Diffraction 2005 (ed. Andronov, I. V.). St. Petersburg: St. Petersburg State University, p. 148.Google Scholar
[47]Vladimirov, V. S. 1971 Equations of Mathematical Physics. New York: Marcel Dekker.Google Scholar