Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T08:54:23.934Z Has data issue: false hasContentIssue false

Acoustic instabilities and plasma heating resulting from energetic ion beam injection

Published online by Cambridge University Press:  13 March 2009

E. H. Da Jornada
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 90000 Porto Alegre, RS, Brasil
J. D. Gaffey Jr
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 90000 Porto Alegre, RS, Brasil

Abstract

Electrostatic instabilities excited by an energetic ion beam are examined as a possible plasma heating mechanism. The dielectric properties of electrostatic waves in a uniform magnetized plasma are studied for a warm ion beam propagating at an arbitrary angle with respect to the magnetic field. The instability threshold and growth rate are calculated for the resonant ion-beam and ion- acoustic modes. The quasi-linear moment equations are used to follow the self-consistent evolution of the macroscopic plasma properties. A comparison is made with the collisional slowing-down rate of the beam. For the fastest growing modes it is found that the quasi-linear slowing-down time is significantly shorter than the coffisional slowing-down time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berk, H. L, Horton, W., Rosenbluth, M. N. & Rutherford, P. H. 1975 Nucl. Fusion, 15, 19.Google Scholar
Berry, L. A., Callen, J. D., Colchin, R. J., Kelley, G. G., Lyon, J. F. & Rome, J. A. 1975 Phys. Rev. Lett. 34, 1085.Google Scholar
Caponi, M. Z. 1972 Ph.D. Thesis, University of Maryland Technical Report 73–016.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Physics. Academic.Google Scholar
Fried, B. O. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Fried, B. D. & Wong, A. Y. 1966 Phys. Fluids, 9, 1085.Google Scholar
Gaffey, J. D. 1976 a J. Plasma Phys. 16, 171.CrossRefGoogle Scholar
Gaffey, J. D. 1976 b J. Plasma Phys. 16, 149.CrossRefGoogle Scholar
Hendel, H. W., Yamada, M., Seiler, S. M. & Ikezi, H. 1976 Phys. Rev. Lett. 36, 319.Google Scholar
Jassby, D. L. & Goldston, B. J. 1976 Nucl. Fusion, 16, 613.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Kulygin, V. M., Mikhailovskii, A. B. & Tsapelkin, E. S. 1971 Plasma Phys. 13, 1111.CrossRefGoogle Scholar
Krommes, J. A., Rosenbluth, M. N. & Tang, W. M. 1977 Nucl. Fusion, 17, 667.CrossRefGoogle Scholar
Landau, R. W. 1976 Queen's College, CUNY Preprint.Google Scholar
Ono, M. & Kulsrud, R. M. 1975 Phys. Fluids, 18, 1287.Google Scholar
Perkins, F. W. 1976 Phys. Fluids, 19, 1012.Google Scholar
Pistunovich, V. I. 1976 Soviet J. Plasma Phys. 2, 1.Google Scholar
Spitzer, L. 1962 The Physics of Fully Ionized Gases. Interscience.Google Scholar
Stix, T. H. 1972 Plasma Phys. 14, 367.Google Scholar
Sweetman, D. R. 1973 Nucl. Fusion, 13, 157.CrossRefGoogle Scholar
Yamada, M. 1977 Bull. Am. Phys. Soc. 22, 1199.Google Scholar