Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T16:47:48.520Z Has data issue: false hasContentIssue false

Time-dependent nanoindentation behavior of high elastic modulus dental resin composites

Published online by Cambridge University Press:  31 January 2011

Isabel K. Lloyd*
Affiliation:
University of Maryland, Department of Materials, College Park, Maryland 20742
*
a)Address all correspondence to this author. e-mail: illoyd@umd.edu
Get access

Abstract

Nanoindentation and the viscous-elastic–plastic (VEP) model developed by Oyen and Cook for lightly filled thermoplastic polymer composites were used to characterize the elastic modulus, hardness, and viscoelastic response of a new high elastic modulus dental resin composite. The VEP model was used because loading rate studies indicated a viscous component in the loading/unloading response of our highly filled, thermosetting acrylic resin composites. Increasing the volume fraction of our high modulus filler increased the elastic modulus and hardness and decreased the viscous response in our composites. Coupling the filler and resin matrix with a commercial coupling agent like Metaltite or MPTMS (3-methacryloxypropyltrimethoxysilane) that ionically bonds to the filler and covalently bonds to the matrix decreases the viscous response and increases the hardness of the composite. The coupling agents did not affect the elastic modulus. The ability of the VEP model to predict load–displacement trajectories and the correlation of the elastic modulus and hardness values determined from the VEP model with those from the direct continuous stiffness measurement mode nanoindentation measurements indicate that the VEP model can be extended to highly filled, thermosetting systems. This is valuable since the potential to predict elastic, plastic, and viscous contributions to behavior should be valuable in the design and understanding of future highly filled resin composite systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Malament, K.A., Socransky, S.S.Survival of Dicor glass-ceramic dental restorations over 14 years. Part II: Effect of thickness of Dicor material and design of tooth preparation. J. Prosthet. Dent. 81, 662 (1999)CrossRefGoogle ScholarPubMed
2.Malament, K.A., Socransky, S.S.Survival of Dicor glass-ceramic dental restorations over 14 years: Part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age. J. Prosthet. Dent. 81, 23 (1999)CrossRefGoogle ScholarPubMed
3.Thompson, V.P., Rekow, D.E.Dental ceramics and the molar crown testing ground. J. Appl. Oral Sci. 12, 26 (2004)CrossRefGoogle ScholarPubMed
4.Lawn, B.R., Pajares, A., Zhang, Y., Deng, Y., Polack, M.A., Lloyd, I.K., Rekow, E.D., Thompson, V.P.Materials design in the performance of all-ceramic crowns. Biomaterials 25, 2885 (2004)CrossRefGoogle ScholarPubMed
5.Kim, J.H., Miranda, P., Kim, D.K., Lawn, B.R.Effect of an adhesive interlayer on the fracture of a brittle coating on a supporting substrate. J. Mater. Res. 18, 222 (2003)CrossRefGoogle Scholar
6.Wang, Y.J., Lee, J.J., Lloyd, I.K., Wilson, O.C., Rosenblum, M., Thompson, V.High modulus nanopowder reinforced dimethacrylate matrix composites for dental cement applications. J. Biomed. Mater. Res. Part A 1, 651 (2007)CrossRefGoogle Scholar
7.Lee, J.J., Wang, Y.J., Lloyd, I.K., Lawn, B.R.Joining veneers to ceramic cores and dentition with adhesive interlayers. J. Dent. Res. 86, 745 (2007)CrossRefGoogle ScholarPubMed
8.Lee, J.J.W., Chai, H., Lloyd, I.K., Lawn, B.R.Crack propagation across an adhesive interlayer in flexural loading. Scr. Mater. 57, 1077 (2007)CrossRefGoogle Scholar
9.Lee, J.J.W., Kwon, J.Y., Bhowmick, S., Lloyd, I.K., Rekow, E.D., Lawn, B.R.Veneer vs. core failure in adhesively bonded all-ceramic crown layers. J. Dent. Res. 87, 363 (2008)CrossRefGoogle ScholarPubMed
10.Lee, J.J.W., Lloyd, I.K., Chai, H., Jung, Y.G., Lawn, B.R.Arrest, deflection, penetration and reinitiation of cracks in brittle layers across adhesive interlayers. Acta Mater. 58, 5859 (2007)CrossRefGoogle Scholar
11.Huang, M., Niu, X., Shrotriya, P., Thompson, V., Rekow, D., Soboyejo, W.O.Contact damage of dental multilayers: Viscous deformation and fatigue mechanisms. J. Eng. Mater-T Asme 127, 33 (2005)CrossRefGoogle Scholar
12.Kim, D.K., Jung, Y.G., Peterson, I.M., Lawn, B.R.Cyclic fatigue of intrinsically brittle ceramics in contact with spheres. Acta Mater. 47, 4711 (1999)CrossRefGoogle Scholar
13.Mesquita, R.V., Axmann, D., Geis-Gerstorfer, A.Dynamic visco-eleastic properties of dental composite resins. Dent. Mater. 22, 258 (2006)CrossRefGoogle ScholarPubMed
14.Musanje, L., Darvell, B.W.Effects of strain rate and temperature on the mechanical properties of resin composites. Dent. Mater. 20, 750 (2004)CrossRefGoogle ScholarPubMed
15.Sabbagh, J., Vreven, J., Leloup, G.Dynamic and static moduli of elasticity of resin-based materials. Dent. Mater. 18, 64 (2002)CrossRefGoogle ScholarPubMed
16.Cook, R.F., Oyen, M.L.Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98, 370 (2007)CrossRefGoogle Scholar
17.Oyen, M.L., Cook, R.F.Load–displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003)CrossRefGoogle Scholar
18.Oyen, M.L., Cook, R.F., Emerson, J.A., Moody, N.R.Indentation responses of time-dependent films on stiff substrates. J. Mater. Res. 19, 3120 (2004)CrossRefGoogle Scholar
19.Drummond, J. L.Nanoindentation of dental composites. J. Biomed. Mater. Res. Part B 78, 27 (2006)CrossRefGoogle ScholarPubMed
20.Oliver, W.C., Pharr, G.M.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
21.Drzal, L.T., Rich, M.J., Koenig, M.F., Lloyd, P.F.Adhesion of graphite fibers to epoxy matrices. 2. The effect of fiber finish. J. Adhes. 16, 133 (1983)CrossRefGoogle Scholar
22.Ash, B.J., Siegel, R.W., Schadler, L.S.Glass-transition temperature behavior of alumina/PMMA nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 42, 4371 (2004)CrossRefGoogle Scholar
23.Somasundaran, P., Chen, T.Y., Sarkar, D.A novel processing scheme for core-shell nano composites using controlled polymer adsorption. Mater. Res. Innovations 2, 325 (1999)CrossRefGoogle Scholar
24.Leger, C., Lira, H.D.L., Paterson, R.Preparation and properties of surface modified ceramic membranes. Part III. Gas permeation of 5 nm alumina membranes modified by trichloro-octadecylsilane. J. Membr. Sci. 120, 187 (1996)CrossRefGoogle Scholar
25.Mammeri, F., Le Bourhis, E., Rozes, L., Sanchez, C., Huignard, A., Lefevre, D.Time, dependence of the indentation behavior of hybrid coatings. J. Non-Cryst. Solids 345–346, 610 (2004)CrossRefGoogle Scholar