Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:54:49.079Z Has data issue: false hasContentIssue false

Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders

Published online by Cambridge University Press:  31 January 2011

Arun Suresh
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Merrilea J. Mayo
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Wallace D. Porter
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The current study uses high-temperature differential scanning calorimetry to document the shift in phase-transformation temperature with particle size throughout a series of alloys in the zirconia–yttria system (0–1.5 mol% yttria). The tetragonal-to-monoclinic (T→M) phase-transformation temperature is seen to vary inversely with particle size. It is shown that a simple thermodynamic approach first proposed by Garvie predicts this inverse linear relationship. Subsequent determination of the key thermodynamic parameters therein (e.g., the surface and volume free energy, enthalpy, and entropy changes involved in the phase transformation) allows a complete predictive equation for the T→M phase transformation in the yttria–zirconia system to be developed as a function of particle size and yttria dopant level. The yttria–zirconia phase diagram is then redrawn with grain size as a third variable. It should be stressed that the current analysis is valid for particulate systems only; a parallel paper tackles the problem for fine-grained yttria–zirconia solids, where the approach is similar, but additional strain energy terms come into play.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Buffat, Ph. and Borel, J.P., Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
2.Goldstein, A.N., Echer, C.M., and Alivisatos, A.P., Science 256, 1425 (1992).CrossRefGoogle Scholar
3.Hasegawa, M., Watabe, M., and Hoshino, K., Surf. Sci. 106, 10 (1981).CrossRefGoogle Scholar
4.Berman, R.P. and Curzon, A.E., Can. J. Phys. 52, 923 (1974).CrossRefGoogle Scholar
5.Winterer, M., Nitsche, R., Redfern, S.A.T., Schmahl, W.W., and Hahn, H., Nanostructured Mater. 5, 679 (1995).CrossRefGoogle Scholar
6.Garvie, R.C., J. Phys. Chem. 82, 218 (1978).CrossRefGoogle Scholar
7.Garvie, R.C. and Swain, M.V., J. Mater. Sci. 20, 1193 (1985).CrossRefGoogle Scholar
8.Garvie, R.C. and Goss, M.C., J. Mater. Sci. 21, 1253 (1986).CrossRefGoogle Scholar
9.Chraska, T., King, A.H., and Berndt, C.C., Mater. Sci. Eng. A 286, 169 (2000).CrossRefGoogle Scholar
10.Chraska, T., King, A.H., Berndt, C.C., and Karthikeyan, J., in Phase Transformations and Systems Driven Far from Equilibrium, edited by Ma, E., Bellon, P., Atzmon, M., and Trivedi, R. (Mater. Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), pp. 613617.Google Scholar
11.Skandan, G., Hahn, H., Roddy, M., and Cannnon, W.R., J. Am. Ceram. Soc. 77, 1706 (1994).CrossRefGoogle Scholar
12.Nitsche, R., Winterer, M., and Hahn, H., Nanostructured Mater. 6, 679 (1995).CrossRefGoogle Scholar
13.Ji, Z., Haynes, J.A., Ferber, M.K., and Rigsbee, J.M., Surf. Coat. Technol. 135, 109 (2001).CrossRefGoogle Scholar
14.Akdogan, E.K., Mayo, W., Safari, A., Rawn, C.J., and Payzant, E.A., Ferroelectrics 223, 11 (1999).CrossRefGoogle Scholar
15.Frey, M.H. and Payne, D.A., Phys. Rev. B 54, 3158 (1996).CrossRefGoogle Scholar
16.Begg, B.D., Vance, E.R., and Nowotny, J., J. Am. Ceram. Soc. 77, 3186 (1982).CrossRefGoogle Scholar
17.Schlag, S., Eicke, H-F., and Stern, W.B., Ferroelectrics 173, 351 (1995).CrossRefGoogle Scholar
18.Rossetti, G.A., Cline, J.P., and Navrotsky, A., J. Mater. Res. 13, 3197 (1998).CrossRefGoogle Scholar
19.McHale, J.M., Auroux, A., Perrotta, A.J., and Navrotsky, A., Science 277, 788 (1997).CrossRefGoogle Scholar
20.Zhang, H. and Banfield, J.F., in Phase Transformations and Systems Driven Far from Equilibrium, edited by Ma, E., Bellon, P., Atzmon, M., and Trivedi, R. (Mater Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), pp. 619624.Google Scholar
21.Zhang, H. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
22.Zhang, H. and Banfield, J.F., J. Phys. Chem. B 104, 3481 (2000).CrossRefGoogle Scholar
23.Gribb, A.A. and Banfield, J.F., Am. Miner. 82, 717 (1997).CrossRefGoogle Scholar
24.Hahn, H., Skandan, G., and Parker, J.C., Scripta Metall. Mater. 25, 2389 (1991).Google Scholar
25.Skandan, G., Foster, C.M., Frase, J., Ali, M.N., and Parker, J.C., Nanostruct. Mater. 1, 313 (1992).CrossRefGoogle Scholar
26.Alivasatos, A.P., Ber Bunsenges Phys. Chem. 101, 1573 (1997).CrossRefGoogle Scholar
27.Chen, C-C., Herhold, A.B., Johnson, C.S., and Alivisatos, A.P., Science 276, 398 (1997).CrossRefGoogle Scholar
28.Tolbert, S.H. and Alivisatos, A.P., Science 265, 273 (1994).CrossRefGoogle Scholar
29.Sato, H., Kitakami, O., Sakurai, T., Shimada, Y., Otani, Y., and Fukamichi, K., J. Appl. Phys. 81, 1858 (1997).CrossRefGoogle Scholar
30.Shi, W., Kong, J., Shen, H., Du, G., Yao, W., and Qi, Z., Vacuum 42, 1070 (1991).CrossRefGoogle Scholar
31.Asaka, K., Hirotsu, Y., and Tadaki, T., Mater. Sci. Eng. A 272–275, 262 (1999).CrossRefGoogle Scholar
32.Kittle, J.A., Hong, Q.Z., Yang, H., Yu, N., Samavedam, S.B., and Gribelyuk, M.A., Thin Solid Films 332, 404 (1998).CrossRefGoogle Scholar
33.Gouma, P.I., Dutta, P.K., and Mills, M.J., Structural Stability of Titania Thin Films. Nanostructured Mater. 11, 1231 (1999).Google Scholar
34.Schlag, S. and Eicke, H-F., Solid State Commun. 91, 883 (1994).CrossRefGoogle Scholar
35.Mayo, M.J., Suresh, A., and Porter, W.D., Thermodynamics for Nanosystems: Grain and Particle Size Dependent Phase Diagrams. Rev. Adv. Mater. Sci. (in press).Google Scholar
36.Çiftçioglu, M. and Mayo, M.J., in Superplasticity in Metals, Ceramics, and Intermetallics, edited by Kobayashi, M., Mayo, M.J., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), pp. 7786.Google Scholar
37.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, (Wiley, New York, 1974).Google Scholar
38.Ingel, R.P. and Lewis, D. III, J. Am. Ceram. Soc. 69, 325 (1986).CrossRefGoogle Scholar
39.Garvie, R.C. and Nicholson, P.S., J. Am. Ceram. Soc. 55, 303 (1972).CrossRefGoogle Scholar
40.Suresh, A., MS Thesis, Pennsylvania State University, University Park, PA, 2001.Google Scholar
41.Li, P., Chen, I-W., and Penner-Hahn, J.E., J. Am. Ceram. Soc. 77, 1281 (1994).CrossRefGoogle Scholar
42.Kingery, W.D., Bowen, H.K., and Uhlman, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1976).Google Scholar
43.Theunissen, G.S.A.M., Winnubst, A.J.A., and Burggraaf, A.J., J. Eur. Ceram. Soc. 9, 251 (1992).CrossRefGoogle Scholar
44.Li, X. and Shih, W-H., J. Am. Ceram. Soc. 80, 2844 (1997).CrossRefGoogle Scholar
45.Natarajan, M., Dar, A.R., and Rao, C.N.R., Trans. Faraday Soc. 65, 3081 (1969).CrossRefGoogle Scholar
46.Chiang, Y-M., Smyth, I.P., Terwilliger, C.D., Petuskey, W.T., and Eastman, J.A., Nanostructured Mater. 1, 235 (1992).CrossRefGoogle Scholar
47.Terwilliger, C.D. and Chiang, Y-M., J. Am. Ceram. Soc. 78, 2045 (1995).CrossRefGoogle Scholar
48.Holmes, H., Fuller, E. Jr, and Gammage, R., J. Phys. Chem. 76, 1497 (1972).CrossRefGoogle Scholar
49.Scott, H.G., J. Mater. Sci. 10, 1527 (1975).CrossRefGoogle Scholar
50.Green, D.J., Hannink, R.J.H., and Swain, M.V., Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1988).Google Scholar
51.Srinivasan, R., Rice, L., and Davis, B.H., J. Am. Ceram. Soc. 73, 3528 (1990).CrossRefGoogle Scholar
52.Maiti, H.S., Gokhale, K.V.G.K., and Subbarao, E.C., J. Am. Ceram. Soc. 55, 317 (1972).CrossRefGoogle Scholar
53.Zhu, W.Z., Ceram. Int. 22, 389 (1996).CrossRefGoogle Scholar
54.Fukuda, K., Iizuka, E., Taguchi, H., and Ito, S., J. Am. Ceram. Soc. 81, 2729 (1998).CrossRefGoogle Scholar
55.Patil, R.N. and Subbarao, E.C., Acta Crystallogr. A 26, 535 (1970).CrossRefGoogle Scholar