Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:17:46.063Z Has data issue: false hasContentIssue false

Structure and optical properties of diamondlike carbon synthesized by plasma immersion ion processing

Published online by Cambridge University Press:  31 January 2011

Xiao-Ming He
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
D. H. Lee
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
K. C. Walter
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
D. Q. Li
Affiliation:
Los Alamos National Laboratory, Chemical Science and Technology Division, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
Get access

Abstract

Hard and transparent diamondlike carbon (DLC) films have been prepared on room-temperature substrates by using a C2H2–Ar plasma immersion ion processing (PIIP) method. The optical properties of the DLC films with different thicknesses deposited on PMMA (polymethyl methacrylate), silicon wafers, and glass plates were systematically examined. It was found that careful control of substrate bias voltage was needed for favorable growth of DLC films with low atomic hydrogen content, high hardness and wear resistance, and excellent optical properties. The resultant DLC films exhibited a low friction coefficient, high optical gap energy, and very high optical transmittance both in infrared and visible light ranges. The study confirmed that C2H2–Ar PIIP with low negative bias voltages and suitable C2H2/Ar gas ratios can produce optically transparent and hard DLC films on optical materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neuville, S. and Matthews, A., MRS Bulletin 22 (9), 22 (1997).CrossRefGoogle Scholar
2.Angus, J. C., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (Chemical Rubber, Boca Raton, FL, 1988), p. 89.Google Scholar
3.Diamond and Diamond-Like Films and Coatings, edited by Clausing, R. E., Horton, L. L., Angus, J. C., and Koidl, P. (Plenum, New York, 1991).CrossRefGoogle Scholar
4.He, Xiaoming, Li, Wenzhi, and Li, Hengde, J. Vac. Sci. Technol. A14 (4), 2039 (1996).CrossRefGoogle Scholar
5.Walter, K.C., Lee, D. H., Baker, N., and Nastasi, M. (unpublished).Google Scholar
6.He, X.M., Bardeau, J-F., Lee, D.H., Walter, K.C., Tuszewski, M., and Nastasi, M., J. Vac. Sci. Technol. B, Mar/Apr, 1999 (in press).Google Scholar
7.Rej, D. J., “Plasma Immersion Ion Implanation,” Handbook of Thin Film Process Technology (Institute of Physics, Philadelphia, PA, 1996), Chap. E2.3.Google Scholar
8.Nastasi, M., Elmoursi, A. A., Raehl, R. J., Hamdi, A.H., Henins, I., Malaczynski, G.W., Mantese, J.V., Munson, C., Qui, X., Reass, W.A., Reji, D. J., Scheuer, J.T., Speck, C. E., Walter, K.C., and Wood, B. P., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-T., Harriott, L.R., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1995), p. 455.Google Scholar
9.Doolittle, L.R., Nucl. Instrum. Meth. B15, 227 (1986).CrossRefGoogle Scholar
10.Ellipsometry and Polarized Light, edited by Azzam, R. M.A and Bashara, N.M. (Elsevier Science Publishers B. V. Amsterdam, 1977).Google Scholar
11.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
12.Panwar, O.S., Sarangi, D., Kumar, S., Dixit, P.N., and Bhattacharyya, R., J. Vac. Sci. Technol. A13 (5), 2964 (1995).Google Scholar
13.Nagai, I., Ishitani, A., Kuroda, H., Yoshikawa, M., and Nagai, N., J. Appl. Phys. 67 (6), 2890 (1990).CrossRefGoogle Scholar
14.Seo, S. C., Ingram, D. C., and Richardson, H. H., J. Vac. Sci. Technol. A13 (6), 2856 (1995).CrossRefGoogle Scholar
15.Park, K. C., Moon, J. H., Jang, J., and Oh, M. H., Appl. Phys. Lett. 68 (25), 3594 (1996).CrossRefGoogle Scholar
16.Maruyama, K., Inoun, T., Yamamoto, M., Morinaga, T., Saitoh, H., and Kamata, K., J. Mater. Sci. Lett. 13, 1793 (1994).CrossRefGoogle Scholar
17.Wang, T.M., Wang, W.J., Chen, B.L., and Zhang, S. H., Phys. Rev. B 50 (8), 5587 (1994).CrossRefGoogle Scholar
18.He, X.M., Bardeau, J-F., Walter, K.C., and Nastasi, M. (unpublished).Google Scholar
19.Siegal, M. P., Barbour, J. C., Provencio, P. N., Tallant, D. R., and Friedmann, T. A., Appl. Phys. Letts. 73 (6), 759 (1998).CrossRefGoogle Scholar
20.He, X. M., Walter, K. C., and Nastasi, M. (unpublished).Google Scholar
21.Andry, P. S., Pastel, P. W., and Varhue, W. J., J. Mater. Res. 11, 221 (1996).CrossRefGoogle Scholar
22.Silva, S. R. P., Robertson, J., Rusli, , Amaratunga, G.A. J., and Schwan, J., Philos. Mag. B 74 (4), 369 (1996).CrossRefGoogle Scholar
23.Robertson, J. and O'Reilly, E., Phys. Rev. B35, 2946 (1987).CrossRefGoogle Scholar
24.Lee, D. H., He, X. M., Walter, K. C., Nastasi, M., Tesmer, J. R., Tuszewski, M., and Tallant, D. R., Appl. Phys. Lett. 73 (17), 2423 (1998).CrossRefGoogle Scholar
25.Bardeau, J-F., He, X.M., Walter, K.C., and Nastasi, M. (unpublished).Google Scholar
26.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62 (11), 1290 (1989).CrossRefGoogle Scholar
27.Xu, S., Tay, B. K., Tan, H. S., Zhong, Li, Tu, Y. Q., Silva, S.R. P., and Milne, W. I., J. Appl. Phys. 79 (9), 7234 (1996).CrossRefGoogle Scholar
28.Ishikawa, J., Takeiri, Y., Ogawa, K., and Takagi, T., J. Appl. Phys. 61, 2509 (1987).CrossRefGoogle Scholar