Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T05:31:01.179Z Has data issue: false hasContentIssue false

Structural and electrical investigation of amorphous-to-crystalline transformation in iron disilicide alloy thin films

Published online by Cambridge University Press:  31 January 2011

M. Michelini
Affiliation:
Physics Department of Modena University, Via Campi 213/A, I-41100 Modena, Italy
F. Nava
Affiliation:
Physics Department of Modena University, Via Campi 213/A, I-41100 Modena, Italy
E. Galli
Affiliation:
Mineralogy Institute of Modena University, Via S. Eufemia, I-41100 Modena, Italy
Get access

Abstract

Electrical and structural properties of coevaporated Fe–Si thin alloy films as a function of annealing temperature have been studied by in situ electrical resistivity measurements and structural analysis including 2 MeV 4He+ ion backscattering, x-ray diffraction, scanning microscopy, and roughness measurements. In the as-deposited state the coevaporated alloy film was amorphous. Upon annealing a sharp increase in resistivity occurred near 400 °C and the increase was determined to be amorphous-to-crystalline β–FeSi2 phase transformation. In cooling, the resistivity increased monotonically with decreasing temperature. Surface roughness is well pronounced for films heat treated at temperatures higher than 700 °C and is due to the difference in thermal expansion coefficients of substrate and β–FeSi2. The crystalline β–FeSi2 was determined to be a semiconductor with an energy gap of 0.80 eV. It is p-type, having a hole concentration and a Hall mobility of 1.4 × 1018 cm−3 and 4 cm2/V s, respectively, at room temperature. The kinetics of the transformation was determined by isothermal heat treatment over the temperature range of 362 °C to 390 °C, and an activation energy of 2.3 eV was measured. The nucleation and growth kinetics in the crystallization process show a change in the power of time dependence from 2.1 to 3.4.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cheng, H. C., Chen, L. J., and Yew, T. R, in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Pittsburgh, PA, 1984), p. 441.Google Scholar
2.Nava, F., Tien, T., and Tu>, K. N., J. Appl. Phys. 57, 2018 (1985).,+K.+N.,+J.+Appl.+Phys.57,+2018+(1985).>Google Scholar
3.Cheng, H. C., Yew, T. R., and Chen, L. J., J. Appl. Phys. 57, 5246 (1985).CrossRefGoogle Scholar
4.Cheng, H. C., Yew, T. R., and Chen, L. J., Appl. Phys. Lett. 47, 128 (1985).CrossRefGoogle Scholar
5.Shinoda, D., Asanabe, S., and Sasaki, Y., J. Phys. Soc. Jpn. 19, 269 (1964).Google Scholar
6.Ware, R. M. and McNeill, D. J., Proc. IEE 111, 178 (1964).Google Scholar
7.Birkholz, U. and Schelm, J., Phys. Status Solidi 27, 413 (1968).CrossRefGoogle Scholar
8.Birkholz, U. and Schelm, J., Phys. Status Solidi 34, K177 (1969).Google Scholar
9.Touloukian, Y. S., Intermetallics, Cermets, Polimers and Composite System; Part I, Thermophysical Properties of High Temperature Solid Materials (Macmillan, New York, 1967), Vol. 6.Google Scholar
10.Geserich, H. P., Sharma, S. K., and Theiner, W.A., Philos. Mag. 27, 1001 (1973).CrossRefGoogle Scholar
11.Samsonov, G. V., No. 2 Properties Index (Plenum, New York, 1984), p. 161.Google Scholar
12.Bost, M. C. and Mahan, J. E., J. Appl. Phys. 63, 839 (1988).Google Scholar
13.Bost, M. C. and Mahan, J.E., J. Appl. Phys. 64, 2034 (1988).CrossRefGoogle Scholar
14.Dimitriadis, C. A. and Werner, J.H., J. Appl. Phys. 68, 93 (1990).Google Scholar
15.Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
16.Jiang, H., Whitlow, H. J., Ostling, M., Niemi, E., d'Heurle, F. M., and Petersson, C. S., J. Appl. Phys. 65, 567 (1989).Google Scholar
17.Nava, F., Philos. Mag. B 61, 601 (1990).Google Scholar
18.Avrami, M., J. Chem. Phys. 7, 1103 (1940); ibid. 8, 212 (1940).Google Scholar
19.Ozawa, T., J. Therm. Anal. 2, 301 (1970).Google Scholar
20.Nava, F., Weiss, B. Z., Tu, K. N., Smith, D. A., and Psaras, P. A., J. Appl. Phys. 60, 2445 (1986).Google Scholar
21.Nava, F., Psaras, P. A., Takai, H., and Tu, K. N., J. Appl. Phys. 59, 2429 (1986).CrossRefGoogle Scholar
22.Tien, T., Ottaviani, G., and Tu, K. N., J. Appl. Phys. 54, 7047 (1983).CrossRefGoogle Scholar
23.Nava, F., Psaras, P. A., Takai, H., Tu, K. N., Valeri, S., and Bisi, O., J. Mater. Res. 1, 327 (1986).Google Scholar
24.Weiss, B. Z., Tu, K. N., and Smith, D. A., J. Appl. Phys. 59, 415 (1986).CrossRefGoogle Scholar
25.Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975), Part 1.Google Scholar