Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T14:59:29.721Z Has data issue: false hasContentIssue false

Quantitative nanoscale mechanical properties of a phase segregated homopolymer surface

Published online by Cambridge University Press:  31 January 2011

J. F. Graham
Affiliation:
Interface Science Western and Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
M. Kovar
Affiliation:
Interface Science Western and Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
P. R. Norton
Affiliation:
Interface Science Western and Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
P. Pappalardo
Affiliation:
Diversey Lever, Innovation Centre, 46701 Commerce Centre Drive, Plymouth, Michigan 48170
J. Van Loon
Affiliation:
Interface Science Western and Department of Chemistry, University of Western Ontario,London, Ontario, N6A 5B7, Canada
O. L. Warren
Affiliation:
Interface Science Western and Department of Chemistry, University of Western Ontario,London, Ontario, N6A 5B7, Canada
Get access

Abstract

Crystallization of poly(ethylene terephthalate) (PET) is accompanied by significant changes in surface topography, easily detected by atomic force microscopy (AFM). Phase imaging by AFM qualitatively indicates contrast in mechanical properties of nanometer scale areas of an annealed PET surface, but cannot provide quantitative data. Using interfacial force microscopy (IFM), we have, for the first time, made quantitative measurements of the elastic moduli of such nm-scale areas on a homopolymer surface. Values of 2.2 GPa, 4.3 GPa, and 11.8 GPa, were found, respectively, for amorphous PET and for phase segregated regions on the surface of an annealed homopolymer PET sample. The method is applicable to any phase segregated surface with nm-sized domains of differing elastic moduli.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weisendanger, R., Scanning Probe Microscopy and Spectroscopy, Methods and Applications (Cambridge University Press, Cambridge, 1994).CrossRefGoogle Scholar
2.Goh, M. C., in Advances in Chemical Physics, edited by Prigogine, I. and Rice, S. A. (Wiley, New York, 1995), Vol. XCI, Chap. 1.Google Scholar
3.Joyce, S. A. and Houston, J. E., Rev. Sci. Instrum. 62, 710 (1991).CrossRefGoogle Scholar
4.Houston, J. E. and Michalske, T. A., Nature (London) 356, 266 (1992).CrossRefGoogle Scholar
5.Warren, O. L., Graham, J. F., and Norton, P. R., Rev. Sci. Instrum. 68, 4124 (1997).CrossRefGoogle Scholar
6.Hayes, N. W., Beamson, G., Clark, D. T., Law, D. S-L., and Raval, R., Sur. Int. Anal. 24, 723 (1996).3.0.CO;2-Y>CrossRefGoogle Scholar
7.Maganov, S. N., Elings, V., and Whangbo, M-H., Surf. Sci. 375, L385 (1997).CrossRefGoogle Scholar
8.Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, New York, 1989).Google Scholar
9.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
10.Timoshenko, S. D. and Goodier, J. N., Theory of Elasticity (McGraw-Hill, New York, 1970).Google Scholar
11.Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
12.Nicholson, T. M., Davies, G. R., and Ward, I. M., Polymer 35, 4259 (1994).CrossRefGoogle Scholar
13.Jog, J. P., Rev. Macromol. Chem. Phys. C 35 (3), 531 (1995).CrossRefGoogle Scholar
14.Johnson, K. L., Kendall, K., and Roberts, A. D., Proc. Soc. London Ser. A 324, 301 (1971); B. V. Derjaguin, V. M. Miller, and Yu. P. Toporov, J. Colloid Interface Sci. 53, 314 (1975).Google Scholar
15.Gane, N., Proc. Soc. London Ser. A 317, 367 (1970).Google Scholar
16.Belak, J., Boercker, D. B., and Stowers, I. F., MRS Bull. 18, 55 (1993).CrossRefGoogle Scholar
17.Spathis, G., J. Mater. Sci. 32, 1943 (1997).CrossRefGoogle Scholar