Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T08:42:43.320Z Has data issue: false hasContentIssue false

Preparation of molecular alloys by the ball-milling technique

Published online by Cambridge University Press:  31 January 2011

J. Font
Affiliation:
Departament de Física i Eng. Nuclear, Univ. Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
J. Muntasell
Affiliation:
Departament de Física i Eng. Nuclear, Univ. Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
E. Cesari
Affiliation:
Departament de Física, Univ. Illes Balears, Crtra. de Valldemossa km 7.5, 07071 Palma de Mallorca, Spain
J. Pons
Affiliation:
Departament de Física, Univ. Illes Balears, Crtra. de Valldemossa km 7.5, 07071 Palma de Mallorca, Spain
Get access

Abstract

Ball milling is a technique used extensively in metallic powders to obtain adequated properties for their applications. In this study we show that this technique is also useful for preparing organic molecular alloys. Pentaglycerin/Pentaerythritol alloys have been obtained mechanically at room temperature. Calorimetric and crystallographic characterizations establish that the mechanically obtained alloys have the same solid crystalline structure and transform to the plastic phase as the conventionally prepared alloys from the melt of the pure compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benjamin, J. S. and Volin, T. E., Met. Trans. 5, 1929 (1974).CrossRefGoogle Scholar
2.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
3.Schwarz, R. B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
4.Koch, C. C., J. Non-Cryst. Solids 117/118, 670 (1990).CrossRefGoogle Scholar
5.Zaluski, L., Tessier, P., Ryan, D. H., Doner, C. B., Zaluska, A., Ström-Olsen, J. O., Trudeau, M.L., and Schulz, R., J. Mater. Res. 8, 3059 (1993).CrossRefGoogle Scholar
6.Zieliński, P. A., Schulz, R., Kaliaguine, S., and Van Neste, A., J. Mater. Res. 8, 2985 (1993).CrossRefGoogle Scholar
7.Barrio, M., Font, J., Muntasell, J., Tamarit, J. Ll., Chanh, N. B., and Haget, Y., J. Chim. Phys. 87, 255 (1990).CrossRefGoogle Scholar
8.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., Chanh, N. B., and Haget, Y., J. Chim. Phys. 87, 1835 (1990).CrossRefGoogle Scholar
9.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., Chanh, N. B., Haget, Y., Teisseire, M., Guion, J., and Alcobé, X., J. Chim. Phys. 89, 695 (1992).CrossRefGoogle Scholar
10.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., Negrier, P., Chanh, N. B., and Haget, Y., J. Phys. Chem. Solids 54, 171 (1993).CrossRefGoogle Scholar
11.Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., and Haget, Y., J. Appl. Crystallogr. 27, 527 (1994).CrossRefGoogle Scholar
12.Font, J. and Muntasell, J., Mater. Res. Bull. XXIX, 1091 (1994).CrossRefGoogle Scholar
13.Barrio, M., Font, J., López, D. O., Muntasell, J., and Tamarit, J. L., Sol. Energy Mater. Sol. Cells 27, 127 (1992).CrossRefGoogle Scholar
14.Font, J., Muntasell, J., and Cardoner, F., Sol. Energy Mater. Sol. Cells 33, 169 (1994).CrossRefGoogle Scholar
15.Kaasinen, H., Sol. Energy Mater. Sol. Cells 27, 173 (1992).CrossRefGoogle Scholar