Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T19:41:13.607Z Has data issue: false hasContentIssue false

High-temperature x-ray diffraction studies of a precursor mixture for Pb-substituted Bi-2223 superconducting wires

Published online by Cambridge University Press:  31 January 2011

A. R. Drews
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology,Gaithersburg, Maryland 20899
J. P. Cline
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology,Gaithersburg, Maryland 20899
T. A. Vanderah
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology,Gaithersburg, Maryland 20899
K. V. Salazar
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

High-temperature x-ray diffraction measurements of a (Bi, Pb)-2223 precursor mixture used to produce high-Jc superconducting tapes were conducted on silver and ZrO2 substrates. The precursor mixture consisted primarily of 2212, Ca2PbO4, and CuO. Phase evolution was markedly sensitive to oxygen partial pressure: In 10% O2 growth of the 2223 phase on silver was rapid, proceeded at the expense of the 2212 phase, and was preceded by the disappearance of the Ca2PbO4 phase. When slowly heated on a silver substrate in 7.5% O2 the 2212 phase melted near 800 °C and subsequently recrystallized near 820 °C in a highly textured form, but with no detectable 2223 formation. Under similar conditions on a ZrO2 substrate, the mixture exhibited no marked changes in the XRD patterns up to 850 °C. The dramatic reactivity on silver was also highly dependent on heating rate; rapid heating in 7.5% O2 to 825 °C did not result in melting of the 2212 phase or appearance of the 2223 phase. In experiments leading to formation of 2223, the c-lattice parameter of the 2212 phase contracted just prior to the onset of formation of 2223. This result is consistent with the formation of an intermediate Pb-doped phase of 2212. A transient amorphous phase appeared briefly at the onset of formation of 2223. No evidence for intergrowth conversion of 2212 to 2223 was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Feng, Y., High, Y. E., Larbalestier, D. C., Sung, Y. S., and Hellstrom, E. E., Appl. Phys. Lett. 62 (13), 15531555 (1993).CrossRefGoogle Scholar
2.Wong-Ng, W. and Frieman, S. W., Appl. Supercon. 2 (3–4), 163180 (1994).Google Scholar
3.Xu, M. and Finnemore, D. K., J. Appl. Phys. 78 (1), July (1995).Google Scholar
4.Sung, Y. S. and Hellstrom, E. E., J. Am. Ceram. Soc. 78 (8), 20032008 (1995).Google Scholar
5.Smith, M. G., Willis, J. O., Peterson, D. E., Bingert, J. F., Phillips, D. S., Coulter, J. Y., Salazar, K. V., and Hults, W. L., Physica C 231, 409415 (1994).CrossRefGoogle Scholar
6.Rasberry, S. D., Certificate of Analysis, SRM 660, NIST, Gaithersburg, MD 20899.Google Scholar
7.Cheary, R. W. and Cline, J. P., Adv. X-ray Anal. 38, 7582 (1995).Google Scholar
8.Reed, W. P., Certificate of Analysis, SRM 1976, NIST, Gaithersburg, MD 20899.Google Scholar
9.Roth, R. S. and Waring, J. S., J. Res. Natl. Bur. Stand. Sect. A, 70 (4), 281303 (1966).CrossRefGoogle Scholar
10.Rietveld, H. M., J. Appl. Crystallogr. 2, 6571 (1969).Google Scholar
11.Larson, A. C. and Von Dreele, R. B., Los Alamos Nat. Lab. Report LAUR 86-748 (1994).Google Scholar
12. 2212: Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., Batlogg, B., van Dover, R. B., Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W., Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988); 2223: C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and R. W. Sleight, Science 240, 631 (1988).Google Scholar
13. CaO, CuO, Ag, ZrO2: Wyckhoff, R.W.G., Crystal Structures (Interscience Publishers, Inc., New York, 1960), Vol. 1–2.Google Scholar
14. Ca2PbO4: Trömel, V.M., Z. Anorg. Allg. Chem. 371, 237247 (1969).Google Scholar
15. Ca2CuO3: Teske, V. C. L. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 379, 234241 (1970).Google Scholar
16. Al2O3: Finger, L.W. and Hazen, R. M., J. Appl. Phys. 49 (12), 5823 (1978).CrossRefGoogle Scholar
17.March, A., Z. Kristallogr. 81, 285297 (1932); W. A. Dollase, J. Appl. Crystallogr. 19, 267–272 (1986).Google Scholar
18.Howard, C. J., J. Appl. Crystallogr. 15, 615620 (1982).Google Scholar
19.Cagliotii, G., Pauletti, A., and Ricci, F. P., Nucl. Instrum. 3, 223226 (1958).CrossRefGoogle Scholar
20.Shannon, R. D., Acta Crystallogr. A32, 751767 (1976).CrossRefGoogle Scholar
21.Rubin, L. M., Orlando, T. P., Vander Sande, J. B., Gorman, G., Savoy, R., Swope, R., and Beyers, R., Appl. Phys. Lett. 61 (16) (1992).CrossRefGoogle Scholar