Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:24:08.599Z Has data issue: false hasContentIssue false

Fatigue-free La-modified Pb(Zr, Ti)O3 capacitors using aseed layer

Published online by Cambridge University Press:  31 January 2011

Santiranjan R. Shannigrahi
Affiliation:
Department of Materials Science and Engineering and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
Sun-Hwa Lee
Affiliation:
Department of Materials Science and Engineering and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
*
a)Address all correspondence to this author.hmjang@postech.ac.kr
Get access

Abstract

The development of lead zirconate titanate (PZT)-based capacitors using common Pt electrodes has been a long-time goal of ferroelectric random access memories (FRAM).In this work, a series of Pb1−xLax(Zr0.55Ti0.45)O3 capacitors (for 0.01 < x < 0.05) having fatigue-free characteristics have been grown on Pt/ Ti/SiO2/Si substrates. Typically 2–3 mol% La-modified PZT capacitors fabricated at 580 °C by applying a PZT seed layer exhibited fatigue-free behavior up to 6.5 × 1010 switching cycles, a low coercive field of 50–55 kV/cm, and a stable charge retention profile with time, all of which assure their suitability for the future nonvolatile FRAM.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J.F. and Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Auciello, O., Scott, J.F., and Ramesh, R., Phys. Today 51, 22 (1998).CrossRefGoogle Scholar
3.Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
4.Moulson, A.J. and Herbert, J.M., Electroceramics (Chapman and Hall, London, United Kingdom, and New York, 1990), Chap. 6.Google Scholar
5.Olivas, J.D. and Bolin, S., JOM 50, 38 (1998).CrossRefGoogle Scholar
6.Al-Shareef, H.N., Bellur, K.R., Kingon, A.I., and Auciello, O., Appl. Phys. Lett. 66, 239 (1995).CrossRefGoogle Scholar
7.Lee, K.B., Tirumala, S., and Desu, S.B., Appl. Phys. Lett. 74, 1484 (1999).CrossRefGoogle Scholar
8.Dat, R., Lichtenwalner, D.J., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 64, 2673 (1994).CrossRefGoogle Scholar
9.Lin, W-J., Tseng, T-Y., Lin, S-P., Tu, S-L., Chang, H., Yang, S-J., and Lin, I-N., J. Am. Ceram. Soc. 80, 1065 (1997).CrossRefGoogle Scholar
10.Warren, W.L., Dimos, D., Tuttle, B.A., Nasby, R.D., and Pike, G.E., Appl. Phys. Lett. 65, 1018 (1994).CrossRefGoogle Scholar
11.Yoo, I.K. and Desu, S.B., Phys. Status Solidi A 133, 565 (1992).CrossRefGoogle Scholar
12.Tani, T. and Payne, D.A., J. Am. Ceram. Soc. 77, 1242 (1994).CrossRefGoogle Scholar
13.Lee, J.S., Kim, C.J., Yoon, D.S., Choi, C.G., Kim, J.M., and No, K., Jpn. J. Appl. Phys. 33, 260 (1994).CrossRefGoogle Scholar
14.Shimizu, M., Sugiyama, M., Fujisawa, H., and Shiosaki, T., Jpn. J. Appl. Phys. 33, 5167 (1994).CrossRefGoogle Scholar
15.Carim, A.H., Tuttle, B.A., Doughty, D.H., and Martinez, S.L., J. Am. Ceram. Soc. 74, 1455 (1991).CrossRefGoogle Scholar
16.Song, Y.J., Zhu, Y., and Desu, S.B., Appl. Phys. Lett. 72, 2686 (1998).CrossRefGoogle Scholar
17.Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).CrossRefGoogle Scholar
18.Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J., and Jo, W., Nature 401, 682 (1999).CrossRefGoogle Scholar
19.Chon, U., Yi, G-C., and Jang, H.M., Appl. Phys. Lett. 78, 658 (2001).CrossRefGoogle Scholar
20.Lee, J.J., Thio, C.L. and Desu, S.B., Phys. Status Solidi A 151, 171 (1995).CrossRefGoogle Scholar
21.Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M.V., Rameshand, R., Evans, J.T. Jr., Appl. Phys. Lett. 67, 866 (1995).CrossRefGoogle Scholar