Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T01:02:42.672Z Has data issue: false hasContentIssue false

Diffusion-limited and asymmetric growth of amorphous layer in Ni/Zr bilayer upon annealing

Published online by Cambridge University Press:  31 January 2011

W. S. Lai
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Solid-State Microstructure Physics, Nanjing University, Nanjing 210093, China
B. X. Liu*
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Solid-State Microstructure Physics, Nanjing University, Nanjing 210093, China
*
a)Address correspondence to this author.dmslbx@mail.tsinghua.edu.cn
Get access

Abstract

Asymmetric growth of amorphous layer in a Ni/Zr bilayer, in which a thin disordered interlayer is preset, upon annealing at medium temperatures is observed by molecular-dynamics simulation with an n-body potential. It is shown that the amorphous layer is extended from the interlayer with different speeds toward two opposite directions and that the growth kinetics follows time dependence of t1/2, indicating amorphization upon annealing in the Ni/Zr bilayer is indeed through a diffusion-limited reaction. Besides, two low temperature limits allowing the growth of amorphous layer toward Ni and Zr layers are also obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hsieh, H. and Yip, S., Phys. Rev. B 39, 7476 (1989).Google Scholar
2.Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. Lett. 62, 1142 (1989).Google Scholar
3.Weissmann, M., Ramírez, R., and Kiwi, M., Phys. Rev. B 46, 2577 (1992).Google Scholar
4.Schröder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985).Google Scholar
5.Clemens, B. M., Phys. Rev. B 33, 7615 (1986).Google Scholar
6.Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).Google Scholar
7.Meng, W. J., Fultz, B., Ma, E., and Johnson, W. L., Appl. Phys. Lett. 51, 661 (1987).Google Scholar
8.Meng, W. J., Nieh, C. W., and Johnson, W. L., Appl. Phys. Lett. 51, 1693 (1987).Google Scholar
9.Altounian, Z., Guo-hua, T., and Strom-Olson, J. O., J. Appl. Phys. 54, 3111 (1983).Google Scholar
10.Mori, H., Fujita, H., Tendo, M., and Fujita, M., Scr. Metall. 18, 783 (1984).Google Scholar
11.Bakker, H., Loeff, P. I., and Weeber, A. W., Defect Diffusion Forum 66–69, 1169 (1989).Google Scholar
12.Aihara, T., Jr., Aoki, K., and Masumoto, T., Scripta Metall. et Mater. 28, 1003 (1993).Google Scholar
13.Teichler, H., Phys. Rev. Lett. 76, 62 (1996).Google Scholar
14.Devanathan, R., Lam, N. Q., Okamoto, P. R., and Meshii, M., in Materials Theory and Modelling, edited by Broughton, J., Bristowe, P., and Newsam, J. (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), p. 653.Google Scholar
15.Mura, P., Demontis, P., Suffritti, G. B., Rosato, V., and Vittori Antisari, M., Phys. Rev. B 50, 2850 (1994).Google Scholar
16.Chopra, K. L., Randlett, M. R., and Duff, R. H., Philos. Mag. 16, 261 (1967).Google Scholar
17.Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).Google Scholar
18.Phillpot, S. R., Yip, S., and Wolf, D., Comput. Phys. 3, 20 (1989).Google Scholar
19.van Rossum, M., Nicolet, M-A., and Johnson, W. J., Phys. Rev. B 29, 5498 (1984).Google Scholar