Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T23:32:42.876Z Has data issue: false hasContentIssue false

Devitrification behavior around supercooled liquid region of an Al85Ni5Y8Co2 metallic glass

Published online by Cambridge University Press:  03 March 2011

H.W. Yang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J.Q. Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
M. Ohnuma
Affiliation:
National Institute for Materials Science, Tsukuba 305-60047, Japan
*
a) Address all correspondence to this author. e-mail: jqwang@imr.ac.cn
Get access

Abstract

Melt-spun and annealed Al85Ni5Y8Co2 metallic glass, with a large supercooled liquid region, were investigated by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and small-angle x-ray scattering (SAXS). TEM studies revealed that the as-quenched ribbons were fully amorphous. Further, the SAXS measurements showed that no evidence for compositional inhomogeneities associated with amorphous phase separation was found in the as-quenched state and the early stage annealing prior to devitrification. The primary crystallization of this glass was characterized, intriguingly, which appeared to be proceeded with an initial thermal relaxation, then α-Al nanocrystal nucleation with a limited number, finally a high density of nanocrystals nucleation and growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).CrossRefGoogle Scholar
2Calin, A., Rüdiger, A., and Köster, U.: Primary crystallization of Al-based metallic glasses. Mater. Sci. Forum 343-346, 359 (2000).Google Scholar
3Allen, D.R., Foley, J.C., and Perepezko, J.H.: Nanocrystal development during primary crystallization of amorphous alloys. Acta Mater. 46, 431 (1998).CrossRefGoogle Scholar
4Gangopadhyay, A.K., Croat, T.K., and Kelton, K.F.: The effect of phase separation on subsequent crystallization in Al18Gd6La2Ni4. Acta Mater. 48, 4035 (2000).Google Scholar
5Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
6Schneider, S., Thiyagarajan, P., and Johnson, W.L.: Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 68, 493 (1996).CrossRefGoogle Scholar
7Martin, I., Ohkubo, T., Ohnuma, M., Deconihout, B., and Hono, K.: Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 52, 4427 (2004).CrossRefGoogle Scholar
8Nagahama, D., Ohkubo, T., and Hono, K.: Crystallization of Ti36Zr24Be40 metallic glass. Scripta Mater. 49, 729 (2003).CrossRefGoogle Scholar
9Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., and Hono, K.: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).Google Scholar
10Park, B.J., Chang, H.J., Kim, D.H., and Kim, W.T.: In situ formation of two amorphous phases by liquid phase separation in Y-Ti-Al-Co alloy. Appl. Phys. Lett. 85, 6353 (2004).Google Scholar
11Louzguine, D.V. and Inoue, A.: Influence of a supercooled liquid on devitritication of Cu-, Hf- and Ni-based metallic glasses. Mater. Sci. Eng., A 375–377, 346 (2004).CrossRefGoogle Scholar
12He, Y., Poon, S.J., and Shiflet, G.J.: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).Google Scholar
13Battezzati, L., Baricco, M., Schumacher, P., Shih, W.C., and Greer, A.L.: Crystallization behavior of Al-Sm amorphous-alloys. Mater. Sci. Eng., A 179(180), 600 (1994).Google Scholar
14Perepezko, J.H. and Wilde, G.: Amorphization and alloy metastability in under-cooled systems. J. Non-Cryst. Solids 274, 271 (2000).CrossRefGoogle Scholar
15Louzguine, D.V. and Inoue, A.: Strong influence of supercooled liquid on crystallization of the Al85Ni5Y4Nd4Co2 metallic glass. Appl. Phys. Lett. 78, 3061 (2001).CrossRefGoogle Scholar
16Madge, S.V., Alexander, D.T.L., and Greer, A.L.: An EFTEM study of compositional variations in Mg-Ni-Nd bulk metallic glasses. J. Non-Cryst. Solids 317, 23 (2003).CrossRefGoogle Scholar
17Wang, J.Q., Zhang, H.W., Gu, X.J., Lu, K., Sommer, F., and Mittemeijer, E.J.: Identification of nanocrystal nucleation and growth in Al85Ni5Y8Co2 metallic glass with quenched-in nuclei. Appl. Phys. Lett. 80, 3319 (2002).Google Scholar
18Tanner, L.E. and Ray, R.: Phase separation in Zr-Ti-Be metallic glasses. Scripta Metall. 14, 657 (1980).Google Scholar
19Tian, N., Ohnuma, M., Ohkubo, T., and Hono, K.: Primary crystallization of an Al88Gd6Er2Ni4 metallic glass. Mater. Trans. 46, 2880 (2005).Google Scholar
20Sun, B.B., Wang, Y.B., Wen, J., Yang, H., Sui, M.L., Wang, J.Q., and Ma, E.: Artifacts induced in metallic glasses during TEM sample preparation. Scripta Mater. 53, 805 (2005).Google Scholar
21Chen, L.C. and Spaepen, F.: Calorimetric evidence for the microquasicrystalline structure of amorphous Al-transition metal-alloys. Nature 336, 366 (1988).CrossRefGoogle Scholar
22Inoue, A., Nakazato, K., Kawamura, Y., Tsai, A.P., and Masumoto, T.: Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M=Cu or Ag) amorphous-alloys. Mater. Trans., JIM 35, 95 (1994).CrossRefGoogle Scholar
23Tsai, A.P., Kamiyama, T., Inoue, A., and Masumoto, T.: Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys. Acta Mater. 45, 1477 (1997).CrossRefGoogle Scholar
24Liu, W., Johnson, W.L., Schneider, S., Geyer, U., and Thiyagarajan, P.: Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy. Phys. Rev. B 59, 11755 (1999).Google Scholar
25Schneider, S., Geyer, U., Thiyagarajan, P., and Johnson, W.L.: Time and temperature dependence of decomposition and crystallization in a multicomponent bulk metallic glass forming alloy. Mater. Sci. Forum 235–238, 337 (1997).Google Scholar
26Hono, K., Zhang, Y., Tsai, A.P., Inoue, A., and Sakurai, T.: Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses. Scripta Mater. 32, 191 (1995).Google Scholar
27Gloriant, T., Ping, D.H., Hono, K., Greer, A.L., and Baro, M.: Nanostructured Al88Ni4Sm8 alloys investigated by transmission electron and field ion microscopies. Mater. Sci. Eng. A. 304–306, 315 (2001).Google Scholar
28Hackenberg, R.E., Gao, M.C., Kauffman, L., and Shiflet, G.L.: Thermodynamics and phase equilibria of the Al-Fe-Gd metallic glass-forming system. Acta Mater. 50, 2245 (2002).CrossRefGoogle Scholar
29Kelton, K.F., Croat, T.K., Gangopadhyay, A.K., Xing, L.Q., Greer, A.L., Weyland, M., Li, X., and Rajan, K.: Mechanisms for nanocrystal formations in metallic glasses. J. Non-Cryst. Solids. 317, 71 (2003).CrossRefGoogle Scholar