Skip to main content Accessibility help
×
Home

A decade of change in the hydraulic connection between an Antarctic epishelf lake and the ocean

  • Ben K. Galton-Fenzi (a1), John R. Hunter (a1), Richard Coleman (a2) and Neal Young (a3)

Abstract

Observations of the water level in Beaver Lake, an epishelf lake in East Antarctica, show a regular tidal signal that is lagged and attenuated from the tides beneath the adjacent Amery Ice Shelf. The phase lag and amplitude attenuation can be created by a narrow inlet connection between Beaver Lake and the cavity beneath the Amery Ice Shelf. A forced linear damped oscillator is used to determine the inlet dimensions that are required to produce the observed phase lag and amplitude attenuation. The model shows that the observations are consistent with a tidal flow that is restricted by the drag created by flow in the narrow inlet. Analysis shows that the phase lag and amplitude attenuation of the tides in Beaver Lake has increased over the years 1991-2002, probably due to a thickening of the overlying ice shelf. The response is sensitive to subtle variations in the dimensions of the inlet.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A decade of change in the hydraulic connection between an Antarctic epishelf lake and the ocean
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A decade of change in the hydraulic connection between an Antarctic epishelf lake and the ocean
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A decade of change in the hydraulic connection between an Antarctic epishelf lake and the ocean
      Available formats
      ×

Copyright

References

Hide All
Bardin, VI, Piskun, AA and Shmideberg, NA (1990) [Hydrological and hydrochemical characteristics of deep water basins in Prince Charles Mountains.] Antarktika, 29, 97-112 [in Russian with English summary]
Fricker, HA and 9 others (2002) Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. J. Geophys. Res., 107(B5), 2092 (doi: 10.1029/2001JB000383)
Galton-Fenzi, BK, Maraldi, C, Coleman, R and Hunter, J (2008) The cavity under the Amery Ice Shelf, East Antarctica. J. Glaciol., 54(188), 881-887
Gibson, JAE and Andersen, DT (2002) Physical structure of epishelf lakes of the southern Bunger Hills, East Antarctica. Antarct. Sci., 14(3), 253-261
Hemer, MA, Hunter, JR and Coleman, R (2006) Barotropic tides beneath the Amery Ice Shelf. J. Geophys. Res., 111 (C11), C11008 (doi: 10.1029/2006JC003622)
Joughin, I and 7 others (1999) Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286(5438), 283-286
King, M, Nguyen, L, Coleman, R and Morgan, PJ (2000) Strategies for high precision processing of GPS measurements with application to the Amery Ice Shelf, East Antarctica. GPS Solutions, 4(1), 2-12
King, MA, Penna, NT, Clarke, PJ and King, ED (2005) Validation of ocean tide models around Antarctica using onshore GPS and gravity data. J. Geophys. Res., 110(B8), B08401 (doi: 10.1029/2004JB003390)
King, MA and 7 others (2009) A 4-decade record of elevation change of the Amery Ice Shelf,East Antarctica. J. Geophys. Res., 114(F1), F01010 (doi: 10.1029/2008JF001094)
Laybourn-Parry, J, Quayle, WC, Henshaw, T, Ruddell, A and Marchant, HJ (2001) Life on the edge: the plankton and chemistry of Beaver Lake, an ultra-oligotrophic epishelf lake, Antarctica. Freshwater Biol., 46(9), 1205-1217
Maraldi, C, Galton-Fenzi, B, Lyard, F, Testut, L and Coleman, R (2007) Barotropic tides of the Southern Indian Ocean and the Amery Ice Shelf cavity. Geophys. Res. Lett., 34(18), L18602 (doi: 10.1029/2007GL030900)
McCleod, IR (1959) Report on geological and glaciological work done by the 1958 Australian National Antarctic Research Expedition. Bureau of Mineral Resources Australia, Canberra (Record 1959/131)
Miles, JW and Lee, YK (1975) Helmholtz resonance of harbours. J. FluidMech., 67(3), 445-464
Mueller, DR, Vincent, WF and Jeffries, MO (2003) Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30(20), 2031 (doi: 10.1029/2003GL017931)
Munk, WH and Cartwright, DE (1966) Tidal spectroscopy and prediction. Philos. Trans. R. Soc. London,Ser. A, 259(1105), 533-581
Padman, L, Fricker, HA, Coleman, R, Howard, S and Erofeeva, L (2002) A new tide model for the Antarctic ice shelves and seas. Ann. Glaciol., 34, 247-254
Pawlowicz, R, Beardsley, B and Lentz, S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Ceosci., 28(8), 929-937
Smith, JA, Hodgson, DA, Bentley, MJ, Verleyen, E, Leng, MJ and Roberts, SJ (2006) Limnology of two Antarctic epishelf lakes and their potential to record periods of ice shelf loss. J. Paleolimnol., 35(2), 373-394
Terra, GM, Van de Berg, WJ and Maas, LRM (2005) Experimental verification of Lorentz’ linearization procedure for quadratic friction. Fluid Dyn. Res., 36(3), 175-188
Veillette, J, Mueller, DR, Antoniades, D and Vincent, WF (2008) Arctic epishelf lakes as sentinel ecosystems: past, present and future. J. Geophys. Res., 113(G4), G04014 (doi: 10.1029/2008JG000730)
Vincent, WF, Gibson, JAE and Jeffries, MO (2001) Ice-shelf collapse, climate change, and habitat loss in the Canadian high Arctic. Polar Rec., 37(201), 133-142
Young, NW and Hyland, G (2002) Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 34, 228-234

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed