Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T08:17:45.027Z Has data issue: false hasContentIssue false

Wake of wavy elliptic cylinder at a low Reynolds number: wavelength effect

Published online by Cambridge University Press:  15 August 2023

Xiaoyu Shi
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
Honglei Bai
Affiliation:
School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen Campus (Shenzhen Campus of Sun Yat-Sen University), Shenzhen 518107, PR China
Md. Mahbub Alam*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
Chunning Ji
Affiliation:
State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, PR China
Hongjun Zhu
Affiliation:
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China
*
 Email address for correspondence: alam@hit.edu.cn, alamm28@yahoo.com

Abstract

Effects of the spanwise wavelength (λ) of a sinusoidal wavy cylinder with elliptic cross-section on wake structures and fluid forces are numerically investigated at a Reynolds number Re = 100. A wide range of the wavelength, $0.43 \le \lambda /{D_m} \le 8.59$, is considered with a wave amplitude of a/Dm = 0.048, where Dm is the hydraulic diameter of the wavy cylinder. Based on vortical structures, Strouhal number (St) and wake closure length (Lc), fluid forces, streamline topologies and spatio-temporal evolutions of the near wake, five distinct flow patterns (I–V) are identified depending on λ/Dm. The drag force reaches its minimum in pattern III, the fluctuating lift force is zero in flow patterns III and IV. Distinct from the classical flow where alternate vortex shedding occurs synchronously over the entire cylinder span, flow pattern IV has alternate vortex shedding over a one half-wavelength of the wavy elliptic cylinder, antiphased with that over the other half-wavelength, thus leading to zero fluctuating lift over one complete wavelength. A thorough comparison of the wakes is made between the wavy elliptic cylinder and wavy circular or square cylinder, distinguishing the underlying flow physics behind the salient behaviours observed.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelhamid, T., Alam, M.M. & Islam, M. 2021 Heat transfer and flow around cylinder: effect of corner radius and Reynolds number. Intl J. Heat Mass Transfer 171 (1), 121105.CrossRefGoogle Scholar
Ahmed, A. & Bays-Muchmore, B. 1992 Transverse flow over a wavy cylinder. Phys. Fluids A: Fluid Dyn. 4 (9), 19591967.CrossRefGoogle Scholar
Ahmed, A., Khan, M.J. & Bays-Muchmore, B. 1993 Experimental investigation of a three-dimensional bluff-body wake. AIAA J. 31 (3), 559563.CrossRefGoogle Scholar
Alam, M.M. 2014 The aerodynamics of a cylinder submerged in the wake of another. J. Fluids Struct. 51, 393400.CrossRefGoogle Scholar
Alam, M.M. 2022 A review of cylinder corner effect on flow and heat transfer. J. Wind Engng Ind. Aerodyn. 229, 105132.CrossRefGoogle Scholar
Alam, M.M. 2023 Fluctuating forces on bluff bodies and their relationships with flow structures. Ocean Engng 273, 113870.CrossRefGoogle Scholar
Alam, M.M., Abdelhamid, T. & Sohankar, A. 2020 Effect of cylinder corner radius and attack angle on heat transfer and flow topology. Intl J. Mech. Sci. 175, 105566.CrossRefGoogle Scholar
Alam, M.M., Zhou, Y. & Wang, X.W. 2011 The wake of two side-by-side cylinders. J. Fluid Mech. 669, 432471.CrossRefGoogle Scholar
Assi, G. & Bearman, P.W. 2018 Vortex-induced vibration of a wavy elliptic cylinder. J. Fluids Struct. 80, 121.CrossRefGoogle Scholar
Bai, H.L. & Alam, M.M. 2018 Dependence of square cylinder wake on Reynolds number. Phys. Fluids 30 (1), 015102.CrossRefGoogle Scholar
Bai, H.L., Alam, M.M., Gao, N. & Lin, Y.F. 2019 a The near wake of sinusoidal wavy cylinders: three-dimensional POD analyses. Intl J. Heat Fluid Flow 75, 256277.CrossRefGoogle Scholar
Bai, H.L., Zang, B. & New, T.H. 2019 b The near wake of a sinusoidal wavy cylinder with a large spanwise wavelength using time-resolved particle image velocimetry. Exp. Fluids 60, 15.CrossRefGoogle Scholar
Bearman, P.W. & Owen, J.C. 1998 Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. J. Fluids Struct. 12, 123130.CrossRefGoogle Scholar
Beem, H.R. & Triantafyllou, M.S. 2015 Wake-induced ‘slaloming’ response explains exquisite sensitivity of seal whisker-like sensors. J. Fluid Mech. 789, 306322.CrossRefGoogle Scholar
Chen, W., Ji, C., Alam, M.M., Xu, D., An, H., Tong, F. & Zhao, Y. 2022 Flow-induced vibrations of a D-section prism at a low Reynolds number. J. Fluid Mech. 941, A52.CrossRefGoogle Scholar
Darekar, R.M. & Sherwin, S.J. 2001 a Flow past a bluff body with a wavy stagnation face. J. Fluids Struct. 15, 587596.CrossRefGoogle Scholar
Darekar, R.M. & Sherwin, S.J. 2001 b Flow past a square-section cylinder with a wavy stagnation face. J. Fluid Mech. 426, 263295.CrossRefGoogle Scholar
Derakhshandeh, J.F. & Alam, M.M. 2019 A review of bluff body wakes. Ocean Engng 182, 475488.CrossRefGoogle Scholar
Hanke, W., Witte, M., Miersch, L., Brede, M., Oeffner, J., Michael, M., Hanke, F., Leder, A. & Dehnhardt, G. 2010 Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J. Expl Biol. 213, 26652672.CrossRefGoogle ScholarPubMed
Hans, H., Miao, J., Weymouth, G. & Triantafyllou, M. 2013 Whisker-like geometries and their force reduction properties. In OCEANS-Bergen, 2013 MTS/IEEE. IEEE.CrossRefGoogle Scholar
He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A. & Periaux, J. 2000 Active control and drag optimization for flow past a circular cylinder: I. Oscillatory cylinder rotation. J. Comput. Phys. 100, 204501.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jie, H. & Liu, Y.Z. 2017 Large eddy simulation and proper orthogonal decomposition of turbulent flow around a vibrissa-shaped cylinder. Intl J. Heat Fluid Flow 67, 261277.CrossRefGoogle Scholar
Kumar, D., Mittal, M. & Sen, S. 2018 Modification of response and suppression of vortex-shedding in vortex-induced vibrations of an elliptic cylinder. Intl J. Heat Fluid Flow 71, 406419.CrossRefGoogle Scholar
Lam, K. & Lin, Y.F. 2007 Drag force control of flow over wavy cylinders at low Reynolds number. J. Mech. Sci. Technol. 21, 13311337.CrossRefGoogle Scholar
Lam, K. & Lin, Y.F. 2008 Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number. Intl J. Heat Fluid Flow 29, 10711088.CrossRefGoogle Scholar
Lam, K. & Lin, Y.F. 2009 Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers. J. Fluid Mech. 620, 195220.CrossRefGoogle Scholar
Lam, K., Lin, Y.F., Zou, L. & Liu, Y. 2012 Numerical study of flow patterns and force characteristics for square and rectangular cylinders with wavy surface. J. Fluids Struct. 28, 359377.CrossRefGoogle Scholar
Lam, K., Wang, F.H., Li, J.Y. & So, R.M.C. 2004 a Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow. J. Fluids Struct. 19, 321334.CrossRefGoogle Scholar
Lam, K., Wang, F.H. & So, R.M.C. 2004 b Three-dimensional nature of vortices in the near wake of a wavy cylinder. J. Fluids Struct. 19, 815833.CrossRefGoogle Scholar
Lee, S.J. & Nguyen, A.T. 2007 Experimental investigation on wake behind a wavy cylinder sinusoidal cross-sectional area variation. Fluid Dyn. Res. 39, 292304.CrossRefGoogle Scholar
Lin, Y.F., Bai, H.L. & Alam, M.M. 2015 The turbulent wake of a square prism with wavy faces. In The Proceedings of World Congress on Advances in Structural Engineering and Mechanics (ASEM15), Incheon, Korea, August 25–29.Google Scholar
Lin, Y.F., Bai, H.L., Alam, M.M., Zhang, W.G. & Lam, K. 2016 Effects of large spanwise wavelength on the wake of a sinusoidal wavy cylinder. J. Fluids Struct. 61, 392409.CrossRefGoogle Scholar
Ling, G.C. & Lin, L.M. 2008 A note on the numerical simulations of flow past a wavy square-section cylinder. Acta Mechanica Sin. 24, 101105.CrossRefGoogle Scholar
New, T.H., Shi, S. & Liu, Y. 2013 Cylinder-wall interference effects on finite-length wavy cylinders at subcritical Reynolds number flows. Exp. Fluids 54, 1601.CrossRefGoogle Scholar
New, T.H., Shi, S. & Liu, Y. 2015 On the flow behaviour of confined finite-length wavy cylinders. J. Fluids Struct. 54, 281296.CrossRefGoogle Scholar
Owen, J.C., Szewezyk, A.A. & Bearman, P.W. 2000 Suppression of Karman vortex shedding. Phys. Fluids 12 (9), S9.CrossRefGoogle Scholar
Paul, I., Prakash, K.A., Vengadesan, S. & Pulletikurthi, V. 2016 Analysis and characterization of momentum and thermal wakes of elliptic cylinders. J. Fluid Mech. 807, 303323.CrossRefGoogle Scholar
Rajani, B.N., Kandasamy, A. & Majumdar, S. 2009 Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 33, 12281247.CrossRefGoogle Scholar
Rastan, M.R. & Alam, M.M. 2021 Transition of wake flows past two circular or square cylinders in tandem. Phys. Fluids 33, 081705.CrossRefGoogle Scholar
Rastan, M.R., Alam, M.M., Zhu, H. & Ji, C. 2022 Onset of vortex shedding from a bluff body modified from square cylinder. Ocean Engng 244, 110393.CrossRefGoogle Scholar
Rinehart, A., Shyam, V. & Zhang, W. 2017 Characterization of seal whisker morphology: implications for whisker-inspired flow control applications. Bioinspir. Biomim. 12, 066005.CrossRefGoogle ScholarPubMed
Shi, X., Alam, M. & Bai, H. 2020 Wakes of elliptical cylinders at low Reynolds number. Intl J. Heat Fluid Flow 82, 108553.CrossRefGoogle Scholar
Shintani, K., Umemura, A. & Takano, A. 1983 Low-Reynolds-number flow past an elliptic cylinder. J. Fluid Mech. 136, 277289.CrossRefGoogle Scholar
Wang, S. & Liu, Y. 2016 Wake dynamics behinds a seal-vibrissa-shaped cylinder: a comparative study by time-resolved particle velocimetry measurements. Exp. Fluids 57, 32.CrossRefGoogle Scholar
Williamson, C.H.K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Xu, C.Y., Chen, L.W. & Lu, X.Y. 2010 Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238273.CrossRefGoogle Scholar
Zhang, W. Daichin, & Lee, S.J. 2005 PIV measurements of the near-wake behind a sinusoidal cylinder. Exp. Fluids 38, 824832.CrossRefGoogle Scholar
Zhang, H.Q., Fey, U., Noack, B.R., Konig, M. & Eckelmann, H. 1995 On the transition of the cylinder wake. Phys. Fluids 7 (4), 779794.CrossRefGoogle Scholar
Zheng, Q. & Alam, M.M. 2017 Intrinsic features of flow past three square prisms in side-by-side arrangement. J. Fluid Mech. 826, 9961033.CrossRefGoogle Scholar