Skip to main content Accessibility help
×
Home

Vortex motion in doubly connected domains

  • L. ZANNETTI (a1), F. GALLIZIO (a1) and G. M. OTTINO (a1)

Abstract

The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.

Copyright

References

Hide All
Clements, R. R. 1973 An inviscid model of two-dimensional vortex shedding. J. Fluid Mech. 57, 321336.
Crowdy, D. G. & Marshall, J. S. 2005 The motion of a point vortex around multiple circular islands. Phys. Fluids 17, 56602–13.
Ferrari, C. 1930 Sulla trasformazione conforme di due cerchi in due profili alari. Mem. R. Acc. Sci. Torino 68, 115.
Ives, D. C. 1976 A modern look at conformal mapping, including multiply connected regions. AIAA J. 14, 10061011.
Johnson, E. R. & McDonald, N. R. 2004 The motion of a vortex near two circular cylinders. Proc. R. Soc. Lond. A 460, 939954.
Johnson, E. R. & McDonald, N. R. 2005 Vortices near barriers with multiple gaps. J. Fluid Mech. 531, 335358.
Kiya, M. & Arie, M. 1977 A contribution to an inviscid vortex-shedding model for an inclined flat plate in uniform flow. J. Fluid Mech. 82, 223243.
Lagally, M. 1929 Die reibungslose stromung im aussengbiet zweier kreise. Z. Angew. Math. Mech. 9, 299305.
Lin, C. C. 1941 On the motion of vortices in two dimensions. Proc. Nat. Acad. Sci. USA 27, 570577.
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Dover.
Pullin, D. I. 1978 The large-scale structure of unsteady self-similar rolled-up vortex-sheets. J. Fluid Mech. 88, 401430.
Routh, E. J. 1881 Some application of conjugate functions. Proc. Lond. Math. Soc. 12, 7389.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Sarpkaya, T. 1975 An inviscid model of two-dimensional vortex shedding for transient and asymptotically steady separated flow over an inclined flat plate. J. Fluid Mech. 68, 109129.
Tricomi, F. 1951 Funzioni ellittiche. Zanichelli, Bologna.
Zannetti, L. & Franzese, P. 1994 The non-integrability of the restricted problem of two vortices in closed domains. Physica D 76, 99109.
Zannetti, L. & Iollo, A. 2003 Passive control of the vortex wake past a flat plate at incidence. Theor. Comput. Fluid Dyn. 16, 211230.
Zannetti, L., Gallizio, F. & Ottino, G. 2007 Vortex capturing vertical axis wind turbine. J. Phys. Conf. Series doi:10.1088/1742-6596/75/1/012029 75, 110.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Vortex motion in doubly connected domains

  • L. ZANNETTI (a1), F. GALLIZIO (a1) and G. M. OTTINO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed