Skip to main content Accessibility help

Temperatures produced by inertially collapsing bubbles near rigid surfaces

  • S. A. Beig (a1), B. Aboulhasanzadeh (a2) and E. Johnsen (a1)


The dynamics of bubbles inertially collapsing in water near solid objects have been the subject of numerous studies in the context of cavitation erosion. While non-spherical bubble collapse, re-entrant jet dynamics and emitted shock waves have received significant interest, less is known about the temperatures thereby produced and their possible connection to damage. In this article, we use highly resolved numerical simulations of a single bubble inertially collapsing near a rigid surface to measure the temperatures produced in the fluid and estimate those in the solid, as well as to identify the responsible mechanisms. In particular, we find that elevated temperatures along the wall can be produced by one of two mechanisms, depending on the initial stand-off distance of the bubble from the wall and the driving pressure: for bubbles initially far from the wall, the shock generated by the bubble collapse is the source of the high temperature, while bubbles starting initially closer migrate towards the wall and eventually come into contact with it. A scaling is introduced to describe the maximum fluid temperature along the wall as a function of the initial stand-off distance and driving pressure. To predict the temperature of the solid, we develop a semianalytical heat transfer model, which supports recent experimental observations that elevated temperatures achieved during collapse could play a role in cavitation damage to soft heat-sensitive materials.


Corresponding author

Email address for correspondence:


Hide All
Barajas, C. & Johnsen, E. 2017 The effects of heat and mass diffusion on freely oscillating bubbles in a viscoelastic, tissue-like medium. J. Acoust. Soc. Am. 141, 908918.
Barber, B. P. & Putterman, S. J. 1991 Observation of synchronous picosecond sonoluminescence. Nature 352, 318320.
Beig, S. A. & Johnsen, E. 2015a Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing. J. Comput. Phys. 302, 548566.
Beig, S. A. & Johnsen, E. 2015b Temperature considerations in non-spherical bubble collapse near a rigid wall. J. Phys.: Conf. Ser. 656, 012044.
Beig, S. A. & Johnsen, E.2018 Inertial collapse of a gas bubble near a rigid boundary. In preparation.
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. 260, 221240.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.
Böhm, H., Betz, S. & Ball, A. 1990 The wear resistance of polymers. Tribol. Intl 23, 399406.
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425484.
Brujan, E. A., Hecht, D. S., Lee, F. & Williams, G. A. 2005 Properties of luminescence from laser-created bubbles in pressurized water. Phys. Rev. E 72, 066310.
Brujan, E. A., Keen, G. S., Vogel, A & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 8592.
Deplancke, T., Lame, O., Cavaille, J. Y., Fivel, M., Riondet, M. & Franc, J. P. 2015 Outstanding cavitation erosion resistance of ultra high molecular weight polyethylene (UHMWPE) coatings. Wear 328, 301308.
Didenko, Y. T., McNamara, W. B. & Suslick, K. S. 2000 Molecular emission from single-bubble sonoluminescence. Nature 407, 877879.
Duplat, J. & Villermaux, E. 2015 Luminescence from collapsing centimeter bubbles expanded by chemical reaction. Phys. Rev. Lett. 115, 15.
Field, J. E. 1991 The physics of liquid impact, shock wave interactions with cavities, and the implications to shock wave lithotripsy. Phys. Med. Biol. 36, 14751484.
Flannigan, D. J., Hopkins, S. D., Camara, C. G., Putterman, S. J. & Suslick, K. S. 2006 Measurement of pressure and density inside a single sonoluminescing bubble. Phys. Rev. Lett. 96, 204301.
Flannigan, D. J. & Suslick, K. S. 2010 Inertially confined plasma in an imploding bubble. Nat. Phys. 6, 598601.
Franc, J. P., Riondet, M., Karimi, A. & Chahine, G. L. 2011 Impact load measurements in an erosive cavitating flow. Trans. ASME J. Fluids Engng 133, 121301.
Gottlieb, S. & Shu, C. W. 1996 Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 7385.
Henry de Frahan, M. T., Varadan, S. & Johnsen, E. 2015 A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. J. Comput. Phys. 280, 489509.
Johnsen, E. & Colonius, T. 2006 Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715732.
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.
Kim, K. H., Chahine, G., Franc, J. P. & Karimi, A. 2014 Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Springer.
Lauer, E., Hu, X. Y., Hickel, S. & Adams, N. A. 2012 Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69, 119.
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.
Le Métayer, O. & Saurel, R. 2016 The Noble–Abel stiffened-gas equation of state. Phys. Fluids 28, 046102.
Legay, M., Gondrexon, N., Le Person, S., Boldo, P. & Bontemps, A. 2011 Enhancement of heat transfer by ultrasound: review and recent advances. Intl J. Chem. Engng 670108, 117.
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.
Moss, W. C., Clarke, D. B., White, J. W. & Young, D. A. 1994 Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys. Fluids 6, 29792985.
Murrone, A. & Guillard, H. 2005 A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202, 664698.
Naudé, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. Trans. ASME J. Basic Engng 83, 648656.
Ohl, C. D., Lindau, O. & Lauterborn, W. 1998 Luminescence from spherically and aspherically collapsing laser-induced bubbles. Phys. Rev. Lett. 103, 3077.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283290.
Ramsey, M. C. & Pitz, R. W. 2013 Energetic cavitation collapse generates 3.2 Mbar plasma with a 1.4 J driver. Phys. Rev. Lett. 110 (15), 154301.
Rayleigh, L. 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.
Storey, B. D. & Szeri, A. J. 2000 Water vapour, sonoluminescence and sonochemistry. Proc. R. Soc. Lond. 456, 16851709.
Supponen, O., Obreschkow, D., Kobel, P. & Farhat, M. 2017a Luminescence from cavitation bubbles deformed in uniform pressure gradients. Phys. Rev. E 96, 033114.
Supponen, O., Obreschkow, D., Kobel, P., Tinguely, M., Dorsaz, N. & Farhat, M. 2017b Shock waves from nonspherical cavitation bubbles. Phys. Rev. Fluids 2, 093601.
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.
Suslick, K. S. & Flannigan, D. J. 2008 Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59, 659683.
Tiwari, A., Pantano, C. & Freund, J. B. 2015 Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 123.
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Temperatures produced by inertially collapsing bubbles near rigid surfaces

  • S. A. Beig (a1), B. Aboulhasanzadeh (a2) and E. Johnsen (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed