Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T01:20:08.624Z Has data issue: false hasContentIssue false

Poiseuille flow in a fluid overlying a porous medium

Published online by Cambridge University Press:  30 April 2008

ANTONY A. HILL
Affiliation:
Department of Mathematics, University of Durham, Durham, DH1 3LE, UK
BRIAN STRAUGHAN
Affiliation:
Department of Mathematics, University of Durham, Durham, DH1 3LE, UK

Abstract

This paper numerically investigates the instability of Poiseuille flow in a fluid overlying a porous medium saturated with the same fluid. A three-layer configuration is adopted. Namely, a Newtonian fluid overlying a Brinkman porous transition layer, which in turn overlies a layer of Darcy-type porous material. It is shown that there are two modes of instability corresponding to the fluid and porous layers, respectively. The key parameters which affect the stability characteristics of the system are the depth ratio between the porous and fluid layers and the transition layer depth.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Carr, M. 2004 Penetrative convection in a superposed porous-medium-fluid layer via internal heating. J. Fluid Mech. 509, 305329.CrossRefGoogle Scholar
Carr, M. & Straughan, B. 2003 Penetrative convection in a fluid overlying a porous layer. Adv. Water Resources 26, 263276.CrossRefGoogle Scholar
Chang, M. 2005 Thermal convection in superposed fluid and porous layers subjected to a horizontal plane Couette flow. Phys. Fluids 17, 064106-1064106-7.CrossRefGoogle Scholar
Chang, M. 2006 Thermal convection in superposed fluid and porous layers subjected to a plane Poiseuille flow. Phys. Fluids 18, 035104-1035104-10.CrossRefGoogle Scholar
Chang, M., Chen, F. & Straughan, B. 2006 Instability of Poiseuille flow in a fluid overlying a porous layer. J. Fluid Mech. 564, 287303.CrossRefGoogle Scholar
Chen, F. & Chen, C. F. 1988 Onset of finger convection in a horizontal porous layer underlying a fluid layer. Trans. ASME C: J. Heat Transfer 110, 403409.CrossRefGoogle Scholar
Choi, C. Y. & Waller, P. M. 1997 Momentum transport mechanism for water flow over porous media. J. Environ. Engng 123, 792799.CrossRefGoogle Scholar
Das, D. B., Nassehi, V. & Wakeman, R. J. 2002 A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions. Adv. Environ. Res. 7, 3558.CrossRefGoogle Scholar
Discacciati, M., Miglio, E. & Quarteroni, A. 2002 Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Maths 43, 5774.CrossRefGoogle Scholar
Dongarra, J. J., Straughan, B. & Walker, D. W. 1996 Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Maths 22, 399435.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Friedlander, S. & Howard, L. 1998 Instability in parallel flows revisited. Stud. Appl. Maths 101, 121.CrossRefGoogle Scholar
Goharzadeh, A., Khalili, A. & Jorgensen, B. B. 2005 Transition layer at a fluid–porous interface. Phys. Fluids 17, 057102-1057102-10.CrossRefGoogle Scholar
Goyeau, B., Lhuillier, D., Gobin, D. & Velarde, M. G. 2003 Momentum transport at a fluid–porous interface. Intl J. Heat Mass Trans. 46, 40714081.CrossRefGoogle Scholar
Gustavsson, L. 1986 Excitation of direct resonances in plane Poiseuille flow. Stud. Appl. Maths 75, 227248.CrossRefGoogle Scholar
Hirata, S. C., Goyeau, B., Gobin, D., Carr, M. & Cotta, R. M. 2007 Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling. Intl J. Heat Mass Transfer 50, 13561367.CrossRefGoogle Scholar
Jones, I. P. 1973 Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231238.CrossRefGoogle Scholar
Lu, J. & Chen, F. 1997 Assessment of mathematical models for the flow in directional solidification. J. Crystal Growth 171, 601613.CrossRefGoogle Scholar
Miglio, E., Quarteroni, A. & Saleri, F. 2003 Coupling of free surface and groundwater flows. Computers Fluids 32, 7383.CrossRefGoogle Scholar
Nield, D. A. 1977 Onset of convection in a fluid layer overlying a layer of porous medium. J. Fluid Mech. 81, 513522.CrossRefGoogle Scholar
Nield, D. A. 1983 The boundary correction for the Rayleigh–Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 3746.CrossRefGoogle Scholar
Nield, D. A. 1991 The limitations of the Brinkman–Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Intl J. Heat Fluid Flow 12, 269272.CrossRefGoogle Scholar
Nield, D. A. 1998 Modelling the effect of surface tension on the onset of natural convection in a saturated porous medium. Transport Porous Media 31, 365368.CrossRefGoogle Scholar
Nield, D. A. & Bejan, A. 2006 Convection in Porous Media, 3rd edn. Springer.Google Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development. Intl J. Heat Mass Transfer 38, 26352646.CrossRefGoogle Scholar
Straughan, B. 1998 Explosive Instabilities in Mechanics. Springer.CrossRefGoogle Scholar
Straughan, B. 2002 Effect of property variation and modelling on convection in a fluid overlying a porous layer. Intl J. Numer. Anal. Meth. Geomech. 26, 7597.CrossRefGoogle Scholar
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy's law. Transport Porous Media 1, 325.CrossRefGoogle Scholar