Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T21:48:28.005Z Has data issue: false hasContentIssue false

Particle dispersion by nonlinearly damped random waves

Published online by Cambridge University Press:  02 December 2015

Oliver Bühler*
Affiliation:
Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
Yuan Guo
Affiliation:
Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
*
Email address for correspondence: obuhler@cims.nyu.edu

Abstract

We present a theoretical study of the dispersion of particles along quasi-horizontal stratification surfaces induced by small-amplitude internal gravity waves that are forced by white noise and dissipated by linear or nonlinear damping. This extends previous studies in which only linear damping was considered. The damping itself is a toy model for the nonlinear processes that would attenuate a wave mode in a broad spectrum of internal waves such as the Garrett–Munk spectrum for ocean internal waves. We compute the velocity covariance using an eigenfunction expansion of the Kolmogorov backward equation and investigate how the degree of nonlinearity affects the scaling of diffusivity with wave amplitude. We find a simple new expression for the diffusivity that is valid in both the linear and nonlinear cases, and we consider the likely quantitative importance of these process in the context of data from field experiments on small-scale ocean tracer dispersion.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balk, A. M. 2006 Wave turbulent diffusion due to the Doppler shift. J. Stat. Mech. P08018.Google Scholar
Balk, A. M., Falkovich, G. & Stepanov, M. G. 2004 Growth of density inhomogeneities in a flow of wave turbulence. Phys. Rev. Lett. 92, 244504.CrossRefGoogle Scholar
Bühler, O. 2000 On the vorticity transport due to dissipating or breaking waves in shallow-water flow. J. Fluid Mech. 407, 235263.Google Scholar
Bühler, O., Grisouard, N. & Holmes-Cerfon, M. 2013 Strong particle dispersion by weakly dissipative random internal waves. J. Fluid Mech. 719, R4.Google Scholar
Bühler, O. & Holmes-Cerfon, M. 2009 Particle dispersion by random waves in rotating shallow water. J. Fluid Mech. 638, 526.Google Scholar
Gardiner, C. W. 1997 Handbook of Stochastic Methods. Springer.Google Scholar
Garrett, C. 2006 Turbulent dispersion in the ocean. Prog. Oceanogr. 70 (2), 113125.Google Scholar
Herterich, K. & Hasselmann, K. 1982 The horizontal diffusion of tracers by surface waves. J. Phys. Oceanogr. 12, 704712.2.0.CO;2>CrossRefGoogle Scholar
Holmes-Cerfon, M., Bühler, O. & Ferrari, R. 2011 Particle dispersion by random waves in the rotating Boussinesq system. J. Fluid Mech. 670, 150175.Google Scholar
Ledoux, V., Daele, M. V. & Berghe, G. V. 2005 Matslise: a matlab package for the numerical solution of Sturm–Liouville and Schrödinger equations. ACM Trans. Math. Softw. (TOMS) 31 (4), 532554.CrossRefGoogle Scholar
Ledwell, J., Watson, A. & Law, C. 1998 Mixing of a tracer in the pycnocline. J. Geophys. Res. 103 (C10), 2149921529.CrossRefGoogle Scholar
McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82 (9), 13971412.Google Scholar
Munk, W. 1981 Internal waves and small-scale processes. In Evolution of Physical Oceanography (ed. Warren, B. A. & Wunsch, C.), pp. 264291. MIT Press.Google Scholar
Oksendal, B. 2013 Stochastic Differential Equations: An Introduction with Applications. Springer Science & Business Media.Google Scholar
Polzin, K. & Ferrari, R. 2004 Isopycnal dispersion in NATRE. J. Phys. Oceanogr. 34, 247257.2.0.CO;2>CrossRefGoogle Scholar
Sanderson, B. G. & Okubo, A. 1988 Diffusion by internal waves. J. Geophys. Res. 93, 35703582.CrossRefGoogle Scholar
Shcherbina, A. Y., Sundermeyer, M. A., Kunze, E., D’Asaro, E., Badin, G., Birch, D., Brunner-Suzuki, Anne-Marie, E. G., Callies, J., Kuebel, C., Brandy, T., Claret, M. et al. 2014 The latmix summer campaign: Submesoscale stirring in the upper ocean. A part of ams special collection latmix: studies of submesoscale stirring and mixing. Bull. Am. Meteorol. Soc. 96, 12571279.Google Scholar
Sundermeyer, M. A. & Ledwell, J. R. 2001 Lateral dispersion over the continental shelf: analysis of dye release experiments. J. Geophys. Res.: Oceans 106 (C5), 96039621.CrossRefGoogle Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196212.Google Scholar
Watanabe, M. & Hibiya, T. 2005 Estimates of energy dissipation rates in the three-dimensional deep ocean internal wave field. J. Oceanogr. 61 (1), 123127.Google Scholar
Weichman, P. & Glazman, R. 2000 Passive scalar transport by travelling wave fields. J. Fluid Mech. 420, 147200.Google Scholar
Young, W. R., Rhines, P. B. & Garrett, C. J. 1982 Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr. 12, 515527.Google Scholar