Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T19:12:40.117Z Has data issue: false hasContentIssue false

Mechanisms underlying transient growth of planar perturbations in unbounded compressible shear flow

Published online by Cambridge University Press:  16 October 2009

NIKOLAOS A. BAKAS*
Affiliation:
Department of Physics, National and Kapodistrian University of Athens, Building IV Panepistimiopolis, 15784 Athens, Greece
*
Email address for correspondence: nikos.bakas@gmail.com

Abstract

Non-modal mechanisms underlying transient growth of propagating acoustic waves and non-propagating vorticity perturbations in an unbounded compressible shear flow are investigated, making use of closed form solutions. Propagating acoustic waves amplify mainly due to two mechanisms: growth due to advection of streamwise velocity that is typically termed as the lift-up mechanism leading for large Mach numbers to an almost linear increase in streamwise velocity with time and growth due to the downgradient irrotational component of the Reynolds stress leading to linear growth of acoustic wave energy for large times. Synergy between these mechanisms along with the downgradient solenoidal component of the Reynolds stress produces large and robust energy amplification.

On the other hand, non-propagating vorticity perturbations amplify due to kinematic deformation of vorticity by the mean flow. For weakly compressible flows, an initial vorticity perturbation abruptly excites acoustic waves with exponentially small amplitude, and the energy gained by vorticity perturbations is transferred back to the mean flow. For moderate Mach numbers, a strong coupling between vorticity perturbations and acoustic waves is found with the energy gained by vorticity perturbations being transferred to acoustic waves that are abruptly excited by the vortex.

Calculation of the optimal perturbations for a viscous flow shows that for low Mach numbers, acoustic wave excitation by vorticity perturbations and the subsequent growth of acoustic waves leads to robust energy growth of the order of Reynolds number, while for large Mach numbers, synergy between the lift-up mechanism and the downgradient solenoidal component of the Reynolds stress dominates the growth and leads to a comparable large amplification of streamwise velocity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Bakas, N. A. & Farrell, B. F. 2009 Gravity waves in a horizontal shear flow. Part II. Interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr. 39, 497511.CrossRefGoogle Scholar
Bakas, N. A., Ioannou, P. J. & Kefaliakos, G. E. 2001 The emergence of coherent structures in stratified shear flow. J. Atmos. Sci. 58, 27902806.2.0.CO;2>CrossRefGoogle Scholar
Berry, M. V. 1989 Uniform asymptotic smoothing of Stokes's discontinuities. Proc. R. Soc. Lond. A 422, 721.Google Scholar
Blumen, W., Drazin, P. G. & Billings, D. F. 1975 Shear layer instability of an inviscid compressible fluid. Part 2. J. Fluid Mech. 71, 305316.CrossRefGoogle Scholar
Boyd, J. P. 1983 The continuous spectrum of linear Couette flow with the beta effect. J. Atmos. Sci. 40, 23042308.2.0.CO;2>CrossRefGoogle Scholar
Broadbent, E. G. & Moore, D. W. 1979 Acoustic destabilization of vortices. Philos. Trans. R. Soc. Lond. A 290, 353371.Google Scholar
Buizza, R. & Palmer, T. N. 1995 The singular vector structure of the atmospheric global circulation. J. Atmos. Sci. 52, 14341456.2.0.CO;2>CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Chagelishvili, G. D., Khujadze, G. R., Lominadze, J. G. & Rogava, A. D. 1997 a Acoustic waves in unbounded shear flows. Phys. Fluids 9, 19551962.CrossRefGoogle Scholar
Chagelishvili, G. D., Rogava, A. D. & Segal, I. N. 1994 Hydrodynamic stability of compressible plane Couette flow. Phys. Rev. E 50, R4283R4285.CrossRefGoogle ScholarPubMed
Chagelishvili, G. D., Tevzadze, A. G., Bodo, G. & Moiseev, S. S. 1997 b Linear mechanism of wave emergence from vortices in smooth shear flows. Phys. Rev. Lett. 79, 31783181.CrossRefGoogle Scholar
Choudhury, S. R. & Lovelace, R. V. E. 1984 On the Kelvin–Helmholtz instabilities of supersonic shear layers. Astrophys. J. 283, 331342.CrossRefGoogle Scholar
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wave-like disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. Proc. R. Soc. Lond. A 406, 1326.Google Scholar
Criminale, W. O. & Cordova, J. Q. 1986 Effects of diffusion in the asymptotics of perturbations in stratified shear flow. Phys. Fluids 29, 20542060.CrossRefGoogle Scholar
Duck, P. W., Erlebacher, G. & Hussaini, M. Y. 1994 On the linear stability of compressible plane Couette flow. J. Fluid Mech. 258, 131165.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18, 487488.CrossRefGoogle Scholar
Farrell, B. F. 1982 The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci. 39, 16631686.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. 1984 Modal and non-modal baroclinic waves. J. Atmos. Sci. 41, 668673.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31, 20932102.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 1993 a Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A 5, 13901400.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 1993 b Transient development of perturbations in stratified shear flow. J. Atmos. Sci. 50, 22012214.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part I. Autonomous operators. J. Atmos. Sci. 53, 20252040.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2000 Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow. Phys. Fluids 12, 30213028.CrossRefGoogle Scholar
Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
Hakim, V. 1998 Asymptotic techniques in nonlinear problems: Some illustrative examples. In Hydrodynamics and Nonlinear Instabilities (ed. Godreche, C. & Manneville, P.), pp. 295386. Cambridge University Press.CrossRefGoogle Scholar
Hanifi, A. & Henningson, D. S. 1998 The compressible inviscid algebraic instability for streamwise independent disturbances. Phys. Fluids 10, 17841786.CrossRefGoogle Scholar
Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8, 826837.CrossRefGoogle Scholar
Hardee, P. E. 1979 Configuration and propagation of jets in extragalactic radio sources. Astrophys. J. 234, 4755.CrossRefGoogle Scholar
Hartman, R. J. 1975 Wave propagation in a stratified shear flow. J. Fluid Mech. 71, 89104.CrossRefGoogle Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365422.CrossRefGoogle Scholar
Hu, S. & Zhong, X. 1998 Linear stability of viscous supersonic plane Couette flow. Phys. Fluids 10, 709729.CrossRefGoogle Scholar
Ioannou, P. J. & Kakouris, A. 2001 Stochastic dynamics of Keplerian accretion disks. Astrophys. J. 550, 931943.CrossRefGoogle Scholar
Kelvin, L. 1887 Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates. Philos. Mag. 24, 188196.Google Scholar
Kim, J. & Lim, J. 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12, 18851888.CrossRefGoogle Scholar
Kreiss, H. O., Lorenz, J. & Naughton, M. J. 1991 Convergence of the solutions of the compressible to the solutions of the incompressible Navier–Stokes equations. Adv. Appl. Math. 12, 187214.CrossRefGoogle Scholar
Landhal, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.CrossRefGoogle Scholar
Lindzen, R. S. 1988 Instability of plane parallel shear flow (toward a mechanistic picture of how it works). Pure Appl. Geophys. 126, 103121.CrossRefGoogle Scholar
Mack, L. M. 1965 Computation of the stability of the laminar compressible boundary layer. In Methods in Computational Physics (ed. Alder, B., Fernbach, S. & Rotenberg, M.), pp. 247299. Academic.Google Scholar
Mack, L. M. 1969 Boundary-layer stability theory. Tech Rep. Doc. 900-277. JPL.Google Scholar
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary layer transition. AIAA J. 13, 278289.CrossRefGoogle Scholar
Malik, M., Alam, M. & Dey, J. 2006 Nonmodal energy growth and optimal perturbations in compressible plane Couette flow. Phys. Fluids 18, 034103.CrossRefGoogle Scholar
Mamatsashvili, G. R. & Chagelishvili, G. D. 2007 Transient growth and coupling of vortex and wave modes in self-gravitating gaseous disks. Mon. Not. R. Astron. Soc. 381, 809818.CrossRefGoogle Scholar
Myers, M. K. 1991 Transport of energy by disturbances in arbitrary steady flows. J. Fluid Mech. 226, 383400.CrossRefGoogle Scholar
Olver, F. W. J. 1974 Asymptotics and Special Functions. Academic.Google Scholar
Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. R. Irish Acad. A 27, 69138.Google Scholar
Papaloizou, J. C. B. & Lin, D. N. C. 1995 Theory of accretion disks. Part I. Angular momentum transport processes. Annu. Rev. Astron. Astrophys. 33, 505540.CrossRefGoogle Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Pringle, J. E. 1981 Accretion disks in astrophysics. Annu. Rev. Astron. Astrophys. 19, 137160.CrossRefGoogle Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid. Mech. 252, 209238.CrossRefGoogle Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Math. 53, 1547.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid. Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Tevzadze, A. G, Chagelishvili, G. D. & Zahn, J. P. 2008 Hydrodynamic stability and mode coupling in Keplerian flows: local strato-rotational analysis. Astron. Astrophys. 478, 915.CrossRefGoogle Scholar
Trefethen, L. N, Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Tung, K. K. 1983 Initial value problems for Rossby waves in a shear flow with critical level. J. Fluid Mech. 133, 443469.CrossRefGoogle Scholar
Vanneste, J. & Yavneh, I. 2004 Exponentially small inertia-gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci. 61, 211223.2.0.CO;2>CrossRefGoogle Scholar
Williams, J. E. & Howe, M. S. 1973 On the possibility of turbulent thickening of weak shock waves. J. Fluid Mech. 58, 461480.CrossRefGoogle Scholar
Yamagata, T. 1976 On the propagation of Rossby waves in a weak shear flow. J. Meteorol. Soc. Jpn 54, 126128.CrossRefGoogle Scholar