Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-21T18:51:49.111Z Has data issue: false hasContentIssue false

Maximum intensity of rarefaction shock waves for dense gases

Published online by Cambridge University Press:  23 December 2009

ALBERTO GUARDONE
Affiliation:
Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano Via La Masa 34, Milano 20156, Italy
CALIN ZAMFIRESCU
Affiliation:
Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 74K, Canada
PIERO COLONNA*
Affiliation:
Process and Energy Department, Delft University of Technology Leghwaterstraat 44, Delft, 2628 CA, The Netherlands
*
Email address for correspondence: P.Colonna@TUDelft.nl

Abstract

Modern thermodynamic models indicate that fluids consisting of complex molecules may display non-classical gasdynamic phenomena such as rarefaction shock waves (RSWs) in the vapour phase. Since the thermodynamic region in which non-classical phenomena are physically admissible is finite in terms of pressure, density and temperature intervals, the intensity of RSWs is expected to exhibit a maximum for any given fluid. The identification of the operating conditions leading to the RSW with maximum intensity is of paramount importance for the experimental verification of the existence of non-classical phenomena in the vapour phase and for technical applications taking advantage of the peculiarities of the non-classical regime. This study investigates the conditions resulting in an RSW with maximum intensity in terms of pressure jump, wave Mach number and shock strength. The upstream state of the RSW with maximum pressure drop is found to be located along the double-sonic locus formed by the thermodynamic states associated with an RSW having both pre- and post-shock sonic conditions. Correspondingly, the maximum-Mach thermodynamic and maximum-strength loci locate the pre-shock states from which the RSW with the maximum wave Mach number and shock strength can originate. The qualitative results obtained with the simple van der Waals model are confirmed with the more complex Stryjek–Vera–Peng–Robinson, Martin–Hou and Span–Wagner equations of state for selected siloxane and perfluorocarbon fluids. Among siloxanes, which are arguably the best fluids for experiments aimed at the generation and measurement of an RSW, the state-of-the-art Span–Wagner multi-parameter equation of state predicts a maximum wave Mach number close to 1.026 for D6 (dodecamethylcyclohexasiloxane, [O-Si-(CH3)2]6). Such value is well within the capacity of the measurement system of a newly built experimental set-up aimed at the first-ever demonstration of the existence of RSWs in dense vapours.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angelino, G. & Invernizzi, C. 1993 Cyclic methylsiloxanes as working fluids for space power cycles. Trans. ASME, J. Sol. Energy 115 (3), 130137.CrossRefGoogle Scholar
Bethe, H. A. 1942 The theory of shock waves for an arbitrary equation of state. Tech Rep. 545. Office of Scientific Research and Development.Google Scholar
Borisov, A. A., Borisov, A. A., Kutateladze, S. S. & Nakoryakov, V. E. 1983 Rarefaction shock waves near the critic liquid–vapour point. J. Fluid Mech. 126, 5973.CrossRefGoogle Scholar
Brown, B. P. & Argrow, B. M. 2000 Application of Bethe–Zel'dovich–Thompson fluids in organic rankine cycle engines. J. Propul. Power 16 (6), 11181124.CrossRefGoogle Scholar
Calderazzi, L. & Colonna, P. 1997 Thermal stability of R-134a, R-141b, R-13I1, R-7146, R-125 associated with stainless steel as a containing material. Intl J. Refrig. 20 (6), 381389.CrossRefGoogle Scholar
Callen, H. B. 1985 Thermodynamics and an Introduction to Thermostatistics., 2nd edn. Wiley.Google Scholar
Colonna, P. 1996 Fluidi di lavoro multi componenti per cicli termodinamici di potenza [Multicomponent working fluids for power cycles]. PhD thesis, Politecnico di Milano, Milan, Italy.Google Scholar
Colonna, P. & Guardone, A. 2006 Molecular interpretation of nonclassical gasdynamics of dense vapours under the van der Waals model. Phys. Fluids 18 (5), 056101-1–056101-14.CrossRefGoogle Scholar
Colonna, P., Guardone, A. & Nannan, R. 2007 Siloxanes: a new class of candidate Bethe–Zel'dovich–Thompson fluids. Phys. Fluids 19 (8), 086102-1–086102-12.CrossRefGoogle Scholar
Colonna, P., Guardone, A., Nannan, R. & van der Stelt, T. P. 2009 On the computation of the fundamental derivative of gasdynamics Γ using equations of state. Fluid Phase Equilib. In Press, Available on line 30 July 2009, doi:10.1016/j.fluid.2009.07.021.CrossRefGoogle Scholar
Colonna, P., Guardone, A., Nannan, R. & Zamfirescu, C. 2008 a Design of the dense gas flexible asymmetric shock tube. J. Fluids Engng 130, 034501-1–034501-6.CrossRefGoogle Scholar
Colonna, P., Nannan, R. & Guardone, A. 2008 b Multiparameter equations of state for siloxanes: [(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i = 1,. . .,3 and [O-Si-(CH3)2]6. Fluid Phase Equilib. 263, 115130.CrossRefGoogle Scholar
Colonna, P., Nannan, R., Guardone, A. & Lemmon, E. W. 2006 Multi-parameter equations of state for selected siloxanes. Fluid Phase Equilib. 244, 193211.CrossRefGoogle Scholar
Colonna, P. & Silva, P. 2003 Dense gas thermodynamic properties of single and multicomponent fluids for fluid dynamics simulations. ASME J. Fluids Engng 125, 414427.CrossRefGoogle Scholar
Cramer, M. S. 1989 Negative nonlinearity in selected fluorocarbons. Phys. Fluids 1 (11), 18941897.CrossRefGoogle Scholar
Cramer, M. S. 1991 Nonclassical dynamics of classical gases. In Nonlinear Waves in Real Fluids (ed. Kluwick, A.), pp. 91145. Springer.CrossRefGoogle Scholar
Cramer, M. S. & Park, S. 1999 On the suppression of shock-induced separation in Bethe–Zel'dovich–Thompson fluids. J. Fluid Mech. 393, 121.CrossRefGoogle Scholar
Cramer, M. S. & Sen, R. 1986 Shock formation in fluids having embedded regions of negative nonlinearity. Phys. Fluids 29, 21812191.CrossRefGoogle Scholar
Cramer, M. S. & Sen, R. 1990 Mixed nonlinearity and double shocks in superfluid helium. J. Fluid Mech. 221, 233261.CrossRefGoogle Scholar
Fergason, S. H., Guardone, A. & Argrow, B. M. 2003 Construction and validation of a dense gas shock tube. J. Thermophys. Heat Transfer 17 (3), 326333.CrossRefGoogle Scholar
Fergason, S. H., Ho, T. L., Argrow, B. M. & Emanuel, G. 2001 Theory for producing a single-phase rarefaction shock wave in a shock tube. J. Fluid Mech. 445, 3754.CrossRefGoogle Scholar
Guardone, A. 2007 Three-dimensional shock tube flows of dense gases. J. Fluid Mech. 583, 423442.CrossRefGoogle Scholar
Guardone, A. & Argrow, B. M. 2005 Nonclassical gasdynamic region of selected fluorocarbons. Phys. Fluids 17 (11), 116102–117.CrossRefGoogle Scholar
Hayes, W. 1960 The basic theory of gasdynamic discontinuities. In Fundamentals of Gasdynamics: High Speed Aerodynamics and Jet Propulsion (ed. Emmons, H. W.), vol. 3, pp. 416481. Princeton University Press.Google Scholar
Ivanov, A. G. & Novikov, S. A. 1961 Rarefaction shock waves in iron and steel. Zh. Eksp. Teoret. Fiz. 40 (6), 18801882.Google Scholar
Kluwick, A. 2001 Theory of shock waves. Rarefaction shocks. In Handbook of Shockwaves (ed. Ben-Dor, G., Igra, O., Elperin, T. & Lifshitz, A.), vol. 1, chapter 3.4, pp. 339411. Academic.CrossRefGoogle Scholar
Kutateladze, S. S., Nakoryakov, V. E. & Borisov, A. A. 1987 Rarefaction waves in liquid and gas-liquid media. Annu. Rev. Fluid Mech. 19, 577600.CrossRefGoogle Scholar
Lambrakis, K. C. & Thompson, P. A. 1972 Existence of real fluids with a negative fundamental derivative. Phys. Fluids 15 (5), 933935.CrossRefGoogle Scholar
Lax, P. D. 1957 Hyperbolic systems of conservation laws. Part II. Comm. Pure Appl. Math. 10, 537566. doi:10.1002/cpa.3160100406CrossRefGoogle Scholar
Liu, T. P. 1975 The Riemann problem for general systems of conservation laws. J. Diff. Equations 18, 218234.CrossRefGoogle Scholar
Martin, J. J. & Hou, Y. 1955 Development of an equation of state for gases. AIChE J. 1 (2), 142151.CrossRefGoogle Scholar
Martin, J. J., Kapoor, R. M. & DeNevers, N. Nevers, N. 1958 An improved equation of state. AIChE J. 5 (2), 159160.CrossRefGoogle Scholar
Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flow of real material. Rev. Mod. Phys. 61 (1), 75130.CrossRefGoogle Scholar
Nannan, R., Colonna, P., Tracy, C. M., Rowley, R. L. & Hurly, J. J. 2007 Ideal-gas heat capacities of dimethylsiloxanes from speed-of-sound measurements and ab initio calculations. Fluid Phase Equilib. 257 (1), 102113.CrossRefGoogle Scholar
Nannan, R. N. 2009 Advancements in nonclassical gasdynamics. PhD thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
Oleinik, O. 1959 Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation. Uspehi Mat. Nauk. 14, 165170.Google Scholar
Smoller, J. 1983 Shock Waves and Reaction–Diffusion Equations. Springer.CrossRefGoogle Scholar
Span, R. & Wagner, W. 2003 a Equations of state for technical applications. Part I. Simultaneously optimized functional forms for nonpolar and polar fluids. Intl J. Thermophys. 24 (1), 139.CrossRefGoogle Scholar
Span, R. & Wagner, W. 2003 b Equations of state for technical applications. Part II. Results for nonpolar fluids. Intl J. Thermophys. 24 (1), 41109.CrossRefGoogle Scholar
Stewart, R. B., Jacobsen, R. T. & Penocello, S. G. 1969 ASHRAE Thermodynamic Properties of Refrigerants. ASHRAE.Google Scholar
Stryjek, R. & Vera, J. H. 1986 PRSV: an improved Peng–Robinson equation of state for pure compounds and mixtures. Can. J. Chem. Engng 64, 323333.CrossRefGoogle Scholar
Thompson, P. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.CrossRefGoogle Scholar
Thompson, P. A. 1988 Compressilbe Fluid Dynamics. McGraw-Hill.Google Scholar
Thompson, P. A. 1991 Liquid–vapour adiabatic phase changes and related phenomena. In Nonlinear Waves in Real Fluids (ed. Kluwick, A.), pp. 147213. Springer.CrossRefGoogle Scholar
Thompson, P. A., Carofano, G. A. & Kim, Y. 1986 Shock waves and phase changes in a large heat capacity fluid emerging from a tube. J. Fluid Mech. 166, 5796.CrossRefGoogle Scholar
Thompson, P. A., Chaves, H., Meier, G. E. A., Kim, Y. G. & Speckmann, H. D. 1987 Wave splitting in a fluid of large heat capacity. J. Fluid Mech. 185, 385414.CrossRefGoogle Scholar
Thompson, P. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187208.CrossRefGoogle Scholar
van der Waals, J. D. 1873 Over de continuïteit van den gas – en vloeistoftoestand [On the continuity of the gas and liquid state]. PhD thesis, Leiden University, Leiden, The Netherlands.Google Scholar
Weyl, H. 1949 Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2, 102122.CrossRefGoogle Scholar
Zamfirescu, C., Guardone, A. & Colonna, P. 2008 Admissibility region for rarefaction shock waves in dense gases. J. Fluid Mech. 599, 363381.CrossRefGoogle Scholar
Zel'dovich, Y. B. 1946 On the possibility of rarefaction shock waves. Zh. Eksp. Teoret. Fiz. 4, 363364.Google Scholar