Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T10:37:36.676Z Has data issue: false hasContentIssue false

Origins of radiometric forces on a circular vane with a temperature gradient

Published online by Cambridge University Press:  26 August 2009

NATHANIEL SELDEN
Affiliation:
University of Southern California, Los Angeles, CA 90089, USA
CEDRICK NGALANDE
Affiliation:
University of Southern California, Los Angeles, CA 90089, USA
NATALIA GIMELSHEIN
Affiliation:
ERC Incorporated, Edwards AFB, CA 93528, USA
SERGEY GIMELSHEIN*
Affiliation:
ERC Incorporated, Edwards AFB, CA 93528, USA
ANDREW KETSDEVER
Affiliation:
University of Colorado at Colorado Springs, Colorado Springs, CO 80933, USA
*
Email address for correspondence: gimelshe@usc.edu

Abstract

Radiometric force on a 0.12 m circular vane is studied experimentally and numerically over a wide range of pressures that cover the flow regimes from near free molecular to near continuum. In the experiment, the vane is resistively heated to about 419 K on one side and 394 K on the other side, and immersed in a rarefied argon gas. The radiometric force is then measured on a nano-Newton thrust stand in a 3 m vacuum chamber and compared with the present numerical predictions and analytical predictions proposed by various authors. The computational modelling is conducted with a kinetic approach based on the solution of ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) equation. Numerical modelling showed the importance of regions with elevated pressure observed near the edges of the vane for the radiometric force production. A simple empirical expression is proposed for the radiometric force as a function of pressure that is found to be in good agreement with the experimental data. The shear force on the lateral side of the vane was found to decrease the total radiometric force.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benford, G. & Benford, J. 2005 An aero-spacecraft for the far upper atmosphere supported by microwaves. Acta Austonaut. 56, 529535.Google Scholar
Bhatnagar, P. L., Gross, E. P., Krook, M. 1954 A model for collision processes in gases I: small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
Binning, G., Quate, C. F. & Gerber, C. H. 1986 Atomic force microscope. Phys. Rev. Lett. 56, 930933.CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.CrossRefGoogle Scholar
Crookes, W. 1874 On attraction and repulsion resulting from radiation. Phil. Trans. R. Soc. Lond. 164, 501527.Google Scholar
Einstein, A. 1924 Zur theorie der radiometrerkrafte. Zeitschrift fur Physik 27, 15.CrossRefGoogle Scholar
Giessibl, F. 2003 Advances in atomic force microscopy. Rev. Mod. Phys. 75 (3), 949983.CrossRefGoogle Scholar
Gotsman, B. & Durig, U. 2005 Experimental observation of attractive and repulsive thermal forces on microcantilevers. Appl. Phys. Lett. 87, 194102.CrossRefGoogle Scholar
Hettner, G. & Czerny, M. 1924 The measurement of the thermal slip of gases. Zeitschrift fur Physik 30, 258267.Google Scholar
Hinterdorfer, P. & Dufrne, Y. F. 2006 Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347355.CrossRefGoogle ScholarPubMed
Holway, L. H. 1966 Numerical solutions for the BGK-model with velocity dependent collision frequency. In Proceedings of Fourth International Symposium on Rarefied Gas Dynamics, University of Toronto, Toronto, 1964 (ed. Leeuw, J. H. D.), pp. 193215. Academic Press.Google Scholar
Jamison, A. J., Ketsdever, A. D. & Muntz, E. P. 2002 Gas dynamic calibration of a nano-Newton thrust stand. Rev. Sci. Instrum. 73 (10), 36293637.CrossRefGoogle Scholar
Loeb, L. B. 1961 The Kinetic Theory of Gases. Dover, pp. 364386.Google Scholar
Marsh, H. E. 1926 Further experiments on the theory of the vane radiometer. J. Opt. Soc. Am. 12, 135148.CrossRefGoogle Scholar
Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.Google Scholar
Mieussens, L. 2000 Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162 (2), 429466.CrossRefGoogle Scholar
Ota, M., Nakao, T. & Sakamoto, M. 2001 Numerical simulation of molecular motion around laser microengine blades. Math. Comput. Simul. 55, 223230.CrossRefGoogle Scholar
Passian, A., Warmack, R. J., Ferrell, T. L. & Thundat, T. 2003 Thermal transpiration at the microscale: a Crookes cantilever. Phys. Rev. Lett. 90 (12), 124503.CrossRefGoogle ScholarPubMed
Passian, A., Wig, A., Meriaudeau, F., Ferrell, T. L. & Thundat, T. 2002 Knudsen forces on microcantilevers. J. Appl. Phys. 92 (10), 63266333.CrossRefGoogle Scholar
Rubens, H. & Nichols, E. F. 1897 Ueber das verhalten des Quarzes gegen Strahlen grosser Wellenlnge. Annalen der Physik und Chemie 60, 418462.CrossRefGoogle Scholar
Saxena, S. C. & Joshi, R. K. 1989 Thermal Accommodation and Adsorption Coefficients of Gases. Hemisphere Publishing.Google Scholar
Scandurra, M., Iacopetti, F. & Colona, P. 2007 Gas kinetic forces on thin plates in the presence of thermal gradients. Phys. Rev. E 75, 026308.CrossRefGoogle ScholarPubMed
Selden, N., Ngalande, C., Gimelshein, S. & Ketsdever, A. 2007 Experimental and computational observation of radiometric forces on a plate. Paper 2007-4403. AIAA.CrossRefGoogle Scholar
Selden, N. Ngalande, C. Gimelshein, S., Muntz, E. P., Alexeenko, A. & Ketsdever, A. 2009 Area and edge effects in radiometric forces. Phys. Rev. E 79, 041201.CrossRefGoogle ScholarPubMed
Sexl, T. 1926 The theory of radiometer effects II. Annalen der physik 81 (24), 800806.CrossRefGoogle Scholar
Tait, P. G. & Dewar, J. 1875 Charcoal vacua. Nature 12, 217218.Google Scholar
Westphal, W. H. 1920 Messungen am radiometer. Zeitschrift fur Physik 23, 92100.CrossRefGoogle Scholar