Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T01:11:36.676Z Has data issue: false hasContentIssue false

The asymptotic downstream flow of plane turbulent wall jets without external stream

Published online by Cambridge University Press:  17 August 2015

Klaus Gersten*
Affiliation:
Institute of Thermo- and Fluid Dynamics, Ruhr University, D-44801 Bochum, Germany
*
Email address for correspondence: K.Gersten@t-online.de

Abstract

The plane turbulent wall-jet flow without externally imposed stream is considered. It is assumed that the wall jet does not emerge from a second wall perpendicular to the velocity vector of the initial wall jet. The (kinematic) momentum flux $K(x)$ of the wall jet decreases downstream owing to the shear stress at the wall. This investigation is based on the hypothesis that the total friction force on the wall is smaller than the total inflow momentum flux. In other words, the turbulent wall jet tends to a turbulent ‘half-free jet’ with a non-zero momentum flux $K_{\infty }\;(\text{m}^{3}~\text{s}^{-2})$ far downstream. The fact that the turbulent half-free jet is the asymptotic form of a turbulent wall jet is the basis for a singular perturbation method by which the wall-jet flow is determined. It turns out that the ratio between the wall distance $y_{m}$ of the maximum velocity and the wall distance $y_{0.5}$ of half the maximum velocity decreases downstream to zero. Dimensional analysis leads immediately to a universal function of the dimensionless momentum flux $K(\mathit{Re}_{x})/K_{\infty }$ that depends asymptotically only on the local Reynolds number $\mathit{Re}_{x}=\sqrt{(x-x_{0})K_{\infty }}/{\it\nu}$, where $x_{0}$ denotes the coordinate of the virtual origin. When the values $K$ and ${\it\nu}$ at the position $x-x_{0}$ are known, the asymptotic momentum flux $K_{\infty }$ can be determined. Experimental data on all turbulent plane wall jets (except those emerging from a second plane wall) collapse to a single universal curve. Comparisons between available experimental data and the analysis make the hypothesis $K_{\infty }\neq 0$ plausible. A convincing verification, however, will be possible in the future, preferably by direct numerical simulations.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamsson, H., Johansson, B. & Löfdahl, L. 1994 A turbulent plane two-dimensional wall jet in a quiescent surrounding. Eur. J. Mech. (B/Fluids) 13, 533556.Google Scholar
Barenblatt, G. I., Chorin, A. J. & Prostokishin, V. M. 2005 The turbulent wall jet: a triple-layered structure and incomplete similarity. Proc. Natl Acad. Sci. USA 102 (25), 88508853.CrossRefGoogle ScholarPubMed
Bradshaw, P. & Gee, M. Y.1960 Turbulent wall jets with and without an external stream. Aero. Res. Counc. R&M 3252.Google Scholar
George, W. K., Abrahamsson, H., Eriksson, J., Karlsson, R. I., Löfdahl, L. & Wosnik, M. 2000 A similarity theory for the turbulent plane wall jet without external stream. J. Fluid Mech. 425, 367411.Google Scholar
Gersten, K. & Herwig, H. 1992 Strömungsmechanik. Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht. Vieweg.Google Scholar
Hammond, G. P. 1982 Complete velocity profile and ‘optimum’ skin friction formulas for the plane wall jet. Trans. ASME J. Fluids Engng 104, 5965.CrossRefGoogle Scholar
Karlsson, R., Eriksson, J. & Persson, J. 1993 LDV measurements in a plane wall jet in a large enclosure. In Laser Techniques and Applications in Fluid Mechanics (ed. Adrian, R., Durâo, D., Durst, F., Heitor, M., Maeda, M. & Whitelaw, J.), pp. 311332. Springer.Google Scholar
Launder, B. E. & Rodi, W. 1981 The turbulent wall jet. Prog. Aerosp. Sci. 19, 81128.Google Scholar
Launder, B. E. & Rodi, W. 1983 The turbulent wall jet – measurements and modeling. Annu. Rev. Fluid Mech. 15, 429459.CrossRefGoogle Scholar
Myers, G. E., Schauer, J. J. & Eustis, R. H. 1963 Plane turbulent wall jet flow development and friction factor. Trans. ASME J. Basic Engng 85, 4754.Google Scholar
Narasimha, R., Narayan, K. Y. & Parthasarathy, S. P. 1973 Parametric analysis of turbulent wall jets in still air. Aeronaut. J. 77, 355359.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Saffman, P. G. 1970 A model for inhomogeneous turbulent flow. Proc. R. Soc. Lond. A 317, 417433.Google Scholar
Schlichting, H. & Gersten, K. 2003 Boundary-Layer Theory, 8th revised and enlarged edn. Springer.Google Scholar
Schneider, W. 1985 Decay of momentum flux in submerged jets. J. Fluid Mech. 154, 91110.Google Scholar
Schneider, W. 1991 Boundary-layer theory of free turbulent shear flows. Z. Flugwiss. Weltraumforsch. 15, 143158.Google Scholar
Schneider, M. E. & Goldstein, R. J. 1994 Laser Doppler measurement of turbulence parameters in a two-dimensional plane wall jet. Phys. Fluids 6, 31163129.CrossRefGoogle Scholar
Schneider, W. & Mörwald, K. 1987 Asymptotic analysis of turbulent free shear layers. In Proc. Int. Conf. Fluid Mech., pp. 5055. Beijing University Press.Google Scholar
Tailland, A. & Mathieu, J. 1967 Jet pariétal. J. Méc. 6, 103130.Google Scholar
Tollmien, W. 1926 Berechnung turbulenter Ausbreitungsvorgänge. Z. Angew. Math. Mech. 6, 468478; NACA TM 1085 (1945).Google Scholar
Wygnanski, I., Katz, Y. & Horev, E. 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.Google Scholar