Skip to main content Accessibility help
×
Home

Postnatal undernutrition in mice causes cardiac arrhythmogenesis which is exacerbated when pharmacologically stressed

  • J. R. Visker (a1) and D. P. Ferguson (a1)

Abstract

Growth restriction caused by postnatal undernutrition increases risk for cardiovascular disease in adulthood with the potential to induce arrhythmogenesis. Thus, the purpose was to determine if undernutrition during development produced arrhythmias at rest and when stressed with dobutamine in adulthood. Mouse dams were fed (CON: 20% protein), or low-protein (LP: 8%) diet before mating. A cross-fostering model was used where pups nursed by dams fed LP diet in early [EUN; postnatal day (PN) 1–10], late (LUN; PN11–21) and whole (PUN; 1–21) phases of postnatal life. Weaned pups were switched to CON diets for the remainder of the study (PN80). At PN80, body composition (magnetic resonance imaging), and quantitative electrocardiogram (ECG) measurements were obtained under 1% isoflurane anesthesia. After baseline ECG, an IP injection (1.5 µg/g body weight) of dobutamine was administered and ECG repeated. Undernutrition significantly (P<0.05) reduced body weight in LUN (22.68±0.88 g) and PUN (19.96±0.32 g) but not in CON (25.05±0.96 g) and EUN (25.28±0.9207 g). Fat mass decreased in all groups compared with controls (CON: 8.00±1.2 g, EUN: 6.32±0.65 g, LUN: 5.11±1.1 g, PUN: 3.90±0.25 g). Lean mass was only significantly reduced in PUN (CON: 17.99±0.26 g, EUN: 17.78±0.39 g, LUN: 17.34±0.33 g, PUN: 15.85±0.28 g). Absolute heart weights were significantly less from CON, with PUN having the smallest. ECG showed LUN had occurrences of atrial fibrillation; EUN had increases of 1st degree atrioventricular block upon stimulation, and PUN had increased risk for ventricular depolarization arrhythmias. CON did not display arrhythmias. Undernutrition in early life resulted in ventricular arrhythmias under stressed conditions, but undernutrition occurring in later postnatal life there is an increased incidence of atrial arrhythmias.

Copyright

Corresponding author

Address for correspondence: J. R. Visker, Department of Kinesiology, Michigan State University, 308 West Circle Drive Room 27S, East Lansing, MI, 48824, USA. E-mail: viskerjo@msu.edu

References

Hide All
1. Mozaffarian, D, Benjamin, EJ, Go, AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016; 133, e38360.
2. Barker, DJ. The fetal origins of coronary heart disease. Acta Paediatr Suppl. 1997; 422, 7882.
3. Barker, DJ. In utero programming of cardiovascular disease. Theriogenology. 2000; 53, 555574.
4. Barker, DJ. The origins of the developmental origins theory. J Intern Med. 2007; 261, 412417.
5. Thornburg, KL. The programming of cardiovascular disease. J Dev Orig Health Dis. 2015; 6, 366376.
6. Feltes, BC, de Faria Poloni, J, Bonatto, D. The developmental aging and origins of health and disease hypotheses explained by different protein networks. Biogerontology. 2011; 12, 293308.
7. Barker, DJ, Winter, PD, Osmond, C, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989; 2, 984985.
8. Ritchey, MD, Loustalot, F, Bowman, BA, Hong, Y. Trends in mortality rates by subtypes of heart disease in the United States, 2000–2010. JAMA. 2014; 312, 20372039.
9. Fall, CH, Barker, DJ, Osmond, C, et al. Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ. 1992; 304, 801805.
10. Wells, JC. Environmental quality, developmental plasticity and the thrifty phenotype: a review of evolutionary models. Evol Bioinform Online. 2007; 3, 109120.
11. Louey, S, Jonker, SS, Giraud, GD, Thornburg, KL. Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. J Physiol. 2007; 580, 639648.
12. Morton, M, Tsang, H, Hohimer, R, et al. Left ventricular size, output, and structure during guinea pig pregnancy. Am J Physiol. 1984; 246, R4048.
13. Black, RE, Victoria, CG, Walker, SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013; 382, 427451.
14. Bubb, KJ, Cock, ML, Black, MJ, et al. Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol. 2007; 578, 871881.
15. Ferguson, DP, Dangott, LJ, Schmitt, EE, Vellers, HL, Lightfoot, JT. Differential skeletal muscle proteome of high- and low-active mice. J Appl Physiol (1985). 2014; 116, 10571067.
16. Taffet, GE, Tate, CA. CaATPase content is lower in cardiac sarcoplasmic reticulum isolated from old rats. Am J Physiol. 1993; 264, H1609H1614.
17. Taffet, GE, Pham, TT, Bick, DL, et al. The calcium uptake of the rat heart sarcoplasmic reticulum is altered by dietary lipid. J Membr Biol. 1993; 131, 3542.
18. Baum, M, Ortiz, L, Quan, A. Fetal origins of cardiovascular disease. Curr Opin Pediatr. 2003; 15, 166170.
19. Skilton, MR, Phang, M. From the α to the ω-3: breaking the link between impaired fetal growth and adult cardiovascular disease. Nutrition. 2016; 32, 725731.
20. Hannan, RD, Jenkins, A, Jenkins, AK, Brandenburger, Y. Cardiac hypertrophy: a matter of translation. Clin Exp Pharmacol Physiol. 2003; 30, 517527.
21. Fenske, S, Probstle, R, Auer, F, et al. Comprehensive multilevel in vivo and in vitro analysis of heart rate fluctuations in mice by ECG telemetry and electrophysiology. Nat Protoc. 2016; 11, 6186.
22. SC, W. A practical approach to using mice in atherosclerosis research. Clin Biochem Rev. 2004; 25, 8193.
23. Mongue-Din, H, Salmon, A, Fiszman, MY, Fromes, Y. Non-invasive restrained ECG recording in conscious small rodents: a new tool for cardiac electrical activity investigation. Pflugers Arch. 2007; 454, 165171.
24. Drenckhahn, JD, Schwarz, QP, Gray, S, et al. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell. 2008; 15, 521533.
25. Drenckhahn, JD, Strasen, J, Heinecke, K, et al. Impaired myocardial development resulting in neonatal cardiac hypoplasia alters postnatal growth and stress response in the heart. Cardiovasc Res. 2015; 106, 4354.
26. Boiten, HJ, van Domburg, RT, Geleijnse, ML, et al. Cardiac stress imaging for the prediction of very long-term outcomes: dobutamine stress echocardiography or dobutamine (99m)Tc-sestamibi SPECT? J Nucl Cardiol. 2016; https://doi.org/10.1007/s12350-016-0521-4.
27. Cortigiani, L, Sorbo, S, Miccoli, M, et al. Prognostic value of cardiac power output to left ventricular mass in patients with left ventricular dysfunction and dobutamine stress echo negative by wall motion criteria. Eur Heart J Cardiovasc Imaging. 2016; 18, 153158.
28. Henri, C, Piérard, LA, Lancellotti, P, et al. Exercise testing and stress imaging in valvular heart disease. Can J Cardiol. 2014; 30, 10121026.
29. Kim, MN, Kim, SA, Kim, YH, et al. Head to head comparison of stress echocardiography with exercise electrocardiography for the detection of coronary artery stenosis in women. J Cardiovasc Ultrasound. 2016; 24, 135143.
30. Standbridge, K, Reyes, E. The role of pharmacological stress testing in women. J Nucl Cardiol. 2016; 23, 9971007.
31. Fiorotto, ML, Davis, TA, Sosa, HA, et al. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice. J Physiol. 2014; 592, 52695286.
32. Reeves, PG, Nielsen, FH, Fahey, GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123, 19391951.
33. Sampson, DA, Hunsaker, HA, Jansen, GR. Dietary protein quality, protein quantity and food intake: effects on lactation and on protein synthesis and tissue composition in mammary tissue and liver in rats. J Nutr. 1986; 116, 365375.
34. Grimble, RF, Mansaray, YK. Effects in rats of dietary protein inadequacy on lactose production, milk volume and components of the lactose synthetase complex (EC 2.4.1.22). Ann Nutr Metab. 1987; 31, 179184.
35. Crnic, LS, Chase, HP. Models of infantile undernutrition in rats: effects on milk. J Nutr. 1978; 108, 17551760.
36. Grigor, MR, Allan, JE, Carrington, JM, et al. Effect of dietary protein and food restriction on milk production and composition, maternal tissues and enzymes in lactating rats. J Nutr. 1987; 117, 12471258.
37. Pine, AP, Jessop, NS, Oldham, JD. Maternal protein reserves and their influence on lactational performance in rats. J Nutr. 1994; 71, 1327.
38. Mueller, AJ, Cox, WM Jr. The effect of changes in diet on the volume and composition of rat milk. J Nutr. 1946; 31, 249259.
39. Lim, K, Zimanyi, MA, Black, MJ. Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res. 2006; 60, 8387.
40. Ferguson, DP, Dangott, LJ, Vellers, HL, Schmitt, EE, Lightfoot, JT. Differential protein expression in the nucleus accumbens of high and low active mice. Behav Brain Res. 2015; 291, 283288.
41. Berul, CI, Aronovitz, MJ, Wang, PJ, Mendelsohn, ME. In vivo cardiac electrophysiology studies in the mouse. Circulation. 1996; 94, 26412648.
42. Zwanenburg, A, Jellema, RK, Jennekens, W, et al. Heart rate-mediated blood pressure control in preterm fetal sheep under normal and hypoxic-ischemic conditions. Pediatr Res. 2013; 73, 420426.
43. Álvarez-García, J, Vives-Borras, M, Gomis, P, et al. Electrophysiological effects of selective atrial coronary artery occlusion in humans. Circulation. 2016; 133, 22352242.
44. Han, Y, Jing, J, Tian, F, et al. ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. Int J Cardiovac Imaging. 2014; 30, 253261.
45. Gouma, E, Simos, Y, Verginadis, I, et al. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Lab Anim. 2012; 46, 4045.
46. Byers, SL, Wiles, MV, Dunn, SL, Taft, RA. Mouse estrous cycle identification tool and images. PLoS One. 2012; 7, e35538.
47. Matthews, PA, Sameulsson, AM, Seed, P, et al. Fostering in mice induces cardiovascular and metabolic dysfunction in adulthood. J Physiol. 2011; 589, 38693881.
48. Botting, KJ, Wang, KC, Padhee, M, et al. Early origins of heart disease: low birth weight and determinants of cardiomyocyte endowment. Clin Exp Pharmacol Physiol. 2012; 39, 814823.
49. Dusick, AM, Poindexter, BB, Ehrenkranz, RA, Lemons, JA. Growth failure in the preterm infant: can we catch up? Semin Perinatol. 2003; 27, 302310.
50. Woo, M, Isganaitis, E, Fitzpatrick, C, et al. Early life nutrition modulates muscle stem cell number: implications for muscle mass and repair. Stem Cells Dev. 2011; 20, 17631769.
51. Wang, J, Li, D, Dangott, LJ, Wu, G. Proteomics and its role in nutrition research. J Nutr. 2006; 136, 17591762.
52. Wei, L, Taffet, GE, Khoury, DS, et al. Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB. 2004; 18, 857859.
53. Yagi, S, Akaike, M, Aihara, K, et al. Endothelial nitric oxide synthase-independent protective action of statin against angiotensin II-induced atrial remodeling via reduced oxidant injury. Hypertension. 2010; 55, 918923.
54. Jansen, HJ, Moghtadaei, M, Mackasey, M, et al. Atrial structure, function and arrhythmogenesis in aged and frail mice. Sci Rep. 2017; 7, 44336.
55. Allessie, MA, Konings, K, Kirchhof, CJ, Wijffels, M. Electrophysiologic mechanisms of perpetuation of atrial fibrillation. Am J Cardiol. 1996; 77, 10A23A.
56. Devkota, A, Bakhit, A, Dufresne, A, et al. Arrhythmias and electrocardiographic changes in systolic heart failure. N Am J Med Sci. 2017; 8, 171174.
57. Friedrichs, GS. Experimental models of atrial fibrillation/flutter. J Pharmacol Toxicol Methods. 2000; 43, 117123.
58. Ozcan, C, Battaglia, E, Young, R, Suzuki, G. LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process. J Am Heart Assoc. 2015; 4, e001733.
59. Zhang, Q, Timofeyev, V, Lu, L, et al. Functional roles of a Ca2+-activated K+ channel in atrioventricular nodes. Circ Res. 2008; 102, 465471.
60. van der Hooft, CS, Heeringa, J, van Herpen, G, et al. Drug-induced atrial fibrillation. J Am Coll Cardiol. 2004; 44, 21172124.
61. Velasco, A, Stirrup, Reyes E, Hage, FG. Guidelines in review: Comparison between AHA/ACC and ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J Nucl Cardiol. 2017; 24, 18931901.
62. Iyer, V, Roman-Campos, D, Sampson, KJ, et al. Purkinje cells as sources of arrhythmias in long QT syndrome type 3. Sci Rep. 2017; 5, 13287.
63. Hamaguchi, S, Kawakami, Y, Honda, Y, et al. Developmental changes in excitation-contraction mechanisms of the mouse ventricular myocardium as revealed by functional and confocal imaging analyses. J Pharmacol Sci. 2013; 123, 167175.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed