Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T21:19:25.915Z Has data issue: false hasContentIssue false

Factors affecting the multiplication and survival of coagulase positive staphylococci in Cheddar cheese

Published online by Cambridge University Press:  01 June 2009

B. Reiter
Affiliation:
Nationl Institute for Research in Dairying, Shinfield, Reading
B. Gillian Fewins
Affiliation:
Nationl Institute for Research in Dairying, Shinfield, Reading
T. F. Fryer
Affiliation:
Nationl Institute for Research in Dairying, Shinfield, Reading
M. Elisabeth Sharpe
Affiliation:
Nationl Institute for Research in Dairying, Shinfield, Reading

Summary

The presence of a thermolabile inhibitor of coagulase-positive staphylococci in milk was confirmed. Starter streptococci significantly suppressed the multiplication of staphylococci in milk not only by their acid production but also by some other competitive effect.

Cheesemaking trials showed that staphylococci multiplied considerably more rapidly in ‘slow’ or ‘sweet’ cheese, where the starter was inhibited by phage, than in normal cheese. Little decrease in numbers occurred in ‘sweet’ cheese even after 18 months, in contrast to the rapid decline in the normal cheese.

Staphylococci subjected in the laboratory to sublethal heat treatments had a prolonged lag phase on all media and their % recovery on selective media was significantly lower than on optimal non-selective media. It is suggested that the low survival rate of the staphylococci in cheese made from milks heated at sublethal temperatures is due to the lag in recovery of heat-shocked cells and their inability to multiply in the unfavourable cheese curd.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, V. D. (1949). Proc. R. Soc. Med. 42, 216.Google Scholar
Baird-Parker, A. C. (1962). J. appl. Bact. 25, 12.CrossRefGoogle Scholar
Barber, M. & Kuper, S. W. A. (1951). J. Path. Bact. 63, 65.CrossRefGoogle Scholar
Busta, F. F. & Jezeski, J. J. (1961). J. Dairy Sci. 44, 1160.Google Scholar
Busta, F. F. & Jezeski, J. J. (1963). Appl. Microbiol. 11, 404.CrossRefGoogle Scholar
Chapman, G. H. (1946). J. Bact. 51, 409.Google Scholar
Franklin, J. G., Williams, D. J. & Clegg, L. F. L. (1958). J. appl. Bact. 21, 51.CrossRefGoogle Scholar
Hendricks, S. L., Belknap, R. W. & Hausler, W. J. Jr. (1959). J. Milk Fd Tech. 22, 313.CrossRefGoogle Scholar
Jackson, H. & Woodbine, M. (1963). J. appl. Bact. 26, 152.CrossRefGoogle Scholar
Jensen, H. & Pedersen, A. H. (1960). Beretn. Forsøksm. Kbh. 124, 31.Google Scholar
Jezeski, J. J., Morris, H. A., Zottola, E. A., George, E. & Busta, F. F. (1961). J. Dairy Sci. 44, 1160.Google Scholar
Jones, A. C., King, G. J. G., Fennell, H. & Stone, D. (1957). Mon. Bull. Minist. Hlth Lab. Serv. 16, 109.Google Scholar
Kaufmann, O. W., Harmon, L. G., Pailthorp, O. C. & Pflug, I. J. (1959). J. Bact. 78, 834.CrossRefGoogle Scholar
Mattick, A. T. R., Neave, F. K. & Chapman, H. R. (1959). 15th Int. Dairy Congr. 3, 1914.Google Scholar
McLeod, R. W., Roughley, R. J. & Richards, J. (1962). Aust. J. Dairy Tech. 17, 54.Google Scholar
Miles, A. A. & Misra, S. S. (1938). J. Hyg., Camb., 38, 732.Google Scholar
Miljkovic, K. (1960). Arch. Lebensmittelhygiene, 11, 20.Google Scholar
Munch-Petersen, E. (1960). Aust. J. Dairy Tech. 15, 25.Google Scholar
Read, R. B., Pritchard, W. L. & Donnelly, C. B. (1963). J. Dairy Sci. 46, 598.Google Scholar
Read, R. B., Pritchard, W. L. & Black, L. A. (1964). Bact. Proc. p. 1.Google Scholar
Reiter, B., Vazquez, D. & Newland, L. G. M. (1961). J. Dairy Res. 28, 183.CrossRefGoogle Scholar
Report (1959). Mon. Bull. Minist. Hlth Lab. Serv. 18, 169.Google Scholar
Roughley, R. J. & McLeod, R. W. (1961). Aust. J. Dairy Tech. 16, 110.Google Scholar
Sharpe, M. E., Neave, F. K. & Reiter, B. (1962). J. appl. Bact. 25, 403.CrossRefGoogle Scholar
Smith, H. W. (1957). Mon. Bull. Minist. Hlth Lab. Serv. 16, 39.Google Scholar
Stern, J. A. & Procter, B. E. (1954). Food Tech., Champaign, 8, 139.Google Scholar
Stiles, M. E. & Witter, L. D. (1963). J. Dairy Res. 46, 600.Google Scholar
Takahashi, I. & Johns, C. K. (1959). J. Dairy Sci. 42, 1032.CrossRefGoogle Scholar
Thatcher, F. S., Comtois, R. D., Ross, D. & Erdman, I. E. (1959). Canad. J. publ. Hlth, 50, 497.Google Scholar
Thatcher, F. S. & Ross, D. (1960). Canad. J. publ. Hlth, 51, 226.Google Scholar
Thatcher, F. S. & Simon, W. (1956). Canad. J. publ. Hlth, 2, 703.Google Scholar
Walker, G. C., Harmon, L. G. & Stine, C. M. (1961). J. Dairy Sci. 44, 1272.CrossRefGoogle Scholar
Williams, R. E. O. & Harper, G. J. (1946). Brit. exp. J. Path. 27 72.Google Scholar