Skip to main content Accessibility help
×
Home

Subtle changes in daily functioning predict conversion from normal to mild cognitive impairment or dementia: an analysis of the NACC database

  • Milap A. Nowrangi (a1), Paul B. Rosenberg (a1) and Jeannie-Marie S. Leoutsakos (a1)

Abstract

Background:

There are relatively small but observable changes in functional ability in those without Mild cognitive impairment (MCI) or dementia. The present study seeks to understand whether these individuals go on to develop MCI or dementia by assessing the association between baseline Functional Activities Questionnaire (FAQ) and conversion independent and after adjustment for cognitive tests.

Methods:

The NACC database was used to conduct the analysis of which 7,625 participants were initially identified as having more than one visit and who were cognitively normal at their first visit. Cox proportional hazards were used to fit three models that controlled for executive and non-executive cognitive domains. A similar model was used to assess the effect of FAQ subcategories on conversion.

Results:

Of these individuals, 1,328 converted to either MCI or dementia by visit 10. Converters had a total visit 1 FAQ score significantly higher than non-converters indicating more functional impairment at baseline. After adjustment for cognitive tests, the association between visit 1 FAQ and subsequent conversion was not attenuated. Doing taxes, remembering dates, and traveling were individually identified as significant predictors of conversion.

Conclusions:

The FAQ can be used as an indirect measure of functional ability and is associated with conversion to MCI or dementia. There is a selective and significant association between changes in financial ability and conversion that is in accordance with other research of financial capacity.

Copyright

Corresponding author

Correspondence should be addressed to: Milap A. Nowrangi, M.D., Paul B. Rosenberg, M.D., and Jeannie-Marie Leoutsakos, Ph.D., Department of Psychiatry, Johns Hopkins Bayview Medical Center, 5300 Alpha Commons Drive, 4th Floor, Baltimore, MD 21224. Office: 410-550-2294; Fax: 410-550-1407. Emails: mnowran1@jhmi.edu., prosenb9@jhmi.edu, jeannie-marie@jhu.edu.

References

Hide All
Abikoff, H. et al. (1987). Logical memory subtest of the wechsler memory scale: age and education norms and alternate-form reliability of two scoring systems. Journal of Clinical and Experimental Neuropsychology, 9, 435448.
Albert, M. S. et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 7, 270279.
Alzheimer's, A. (2014). 2014 Alzheimer's disease facts and figures. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 10, e47e92.
Artero, S. et al. (2008). Risk profiles for mild cognitive impairment and progression to dementia are gender specific. Journal of Neurology, Neurosurgery, and Psychiatry, 79, 979984.
Bangen, K. J. et al. (2010). Complex activities of daily living vary by mild cognitive impairment subtype. Journal of the International Neuropsychological Society: JINS, 16, 630639.
Barberger-Gateau, P., Dartigues, J. F. and Letenneur, L. (1993). Four instrumental activities of daily living score as a predictor of one-year incident dementia. Age and Ageing, 22, 457463.
Beekly, D. L. et al. (2004). The national Alzheimer's coordinating center (NACC) database: an Alzheimer disease database. Alzheimer Disease and Associated Disorders, 18, 270277.
Beekly, D. L. et al. (2007). The national Alzheimer's coordinating center (NACC) database: the uniform data set. Alzheimer Disease and Associated Disorders, 21, 249258.
Bookheimer, S. Y. et al. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. The New England Journal of Medicine, 343, 450456.
Braak, H. and Braak, E. (1995). Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of Aging, 16, 271278; discussion 278–284.
Bruscoli, M. and Lovestone, S. (2004). Is MCI really just early dementia? A systematic review of conversion studies. International Psychogeriatrics/IPA, 16, 129140.
Burton, C. L., Strauss, E., Hultsch, D. F. and Hunter, M. A. (2006). Cognitive functioning and everyday problem solving in older adults. The Clinical Neuropsychologist, 20, 432452.
Caselli, R. J. et al. (2014). The neuropsychology of normal aging and preclinical Alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 10, 8492.
Chaytor, N. and Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: a review of the literature on everyday cognitive skills. Neuropsychology Review, 13, 181197.
DeCarli, C. (2003). Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. The Lancet Neurology, 2, 1521.
Delis, D. C., Kramer, J. H., Kaplan, E. and Holdnack, J. (2004). Reliability and validity of the delis-kaplan executive function system: an update. Journal of the International Neuropsychological Society, 10, 301303.
Di Carlo, A. et al. (2007). CIND and MCI in the Italian elderly: frequency, vascular risk factors, progression to dementia. Neurology, 68, 19091916.
Duda, B., Puente, A. N. and Miller, L. S. (2014). Cognitive reserve moderates relation between global cognition and functional status in older adults. Journal of Clinical and Experimental Neuropsychology, 36, 368378.
Farias, S. T., Harrell, E., Neumann, C. and Houtz, A. (2003). The relationship between neuropsychological performance and daily functioning in individuals with Alzheimer's disease: ecological validity of neuropsychological tests. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 18, 655672.
Farias, S. T., Mungas, D., Reed, B. R., Harvey, D., Cahn-Weiner, D. and Decarli, C. (2006). MCI is associated with deficits in everyday functioning. Alzheimer Disease and Associated Disorders, 20, 217223.
Fischer, P. et al. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68, 288291.
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.
Harada, C. N., Natelson Love, M. C. and Triebel, K. L. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29, 737752.
Homack, S., Lee, D. and Riccio, C. A. (2005). Test review: Delis-Kaplan executive function system. Journal of Clinical and Experimental Neuropsychology, 27, 599609.
Hughes, T. F., Chang, C. C., Bilt, J. V., Snitz, B. E. and Ganguli, M. (2012). Mild cognitive deficits and everyday functioning among older adults in the community: the monongahela-youghiogheny healthy aging team study. The American Journal of Geriatric Psychiatry, 20, 836844.
Jefferson, A. L. et al. (2008). Characterization of activities of daily living in individuals with mild cognitive impairment. The American Journal of Geriatric Psychiatry, 16, 375383.
Jensen, A. R. and Figueroa, R. A. (1975). Forward and backward digit span interaction with race and IQ: predictions from Jensen's theory. Journal of Educational Psychology, 67, 882893.
Kaplan, E., Goodglass, H. and Weintraub, S. (1983). The Boston Naming Test. Philadelphia, PA: Lea & Febiger.
Kawas, C. H. et al. (2003). Visual memory predicts Alzheimer's disease more than a decade before diagnosis. Neurology, 60, 10891093.
Kryscio, R. J., Schmitt, F. A., Salazar, J. C., Mendiondo, M. S. and Markesbery, W. R. (2006). Risk factors for transitions from normal to mild cognitive impairment and dementia. Neurology, 66, 828832.
LaBarge, E., Edwards, D. and Knesevich, J. W. (1986). Performance of normal elderly on the Boston naming test. Brain and Language, 27, 380384.
Lezak, M. D. (2004c). Verbal functions and language skills. In Lezak, M. D. (ed.), Neuropsychological Assessment (pp. 647–693). Oxford: Oxford University Press.
Marchesi, V. T. (2012). Alzheimer's disease 2012: the great amyloid gamble. The American Journal of Pathology 180, 17621767.
Mariani, E. et al. (2008). Influence of comorbidity and cognitive status on instrumental activities of daily living in amnestic mild cognitive impairment: results from the ReGAl project. International Journal of Geriatric Psychiatry, 23, 523530.
Marshall, G. A. et al. For The Alzheimer's Disease Neuroimaging, I. (2014). Everyday cognition scale items that best discriminate between and predict progression from clinically normal to mild cognitive impairment. Current Alzheimer Research, 11, 853861.
Marson, D. C. et al. (2000). Assessing financial capacity in patients with Alzheimer disease: a conceptual model and prototype instrument. Archives of Neurology, 57, 877884.
Marson, D. C. et al. (2009). Clinical interview assessment of financial capacity in older adults with mild cognitive impairment and Alzheimer's disease. Journal of the American Geriatrics Society, 57, 806814.
McKhann, G. M. (2011). Changing concepts of Alzheimer disease. JAMA, 305, 24582459.
Monsell, S. E. et al. (2014). Neuropsychological changes in asymptomatic persons with Alzheimer disease neuropathology. Neurology, 83, 434440.
Morris, J. C. ed. (2008). National Alzheimer's Coordinating Center: NACC Uniform Data Set (UDS) Coding Guidebook for Initial Visit Packet. Washington University: ADC Clinical Task Force.
Morris, J. C. et al. (2006). The uniform data set (UDS): clinical and cognitive variables and descriptive data from Alzheimer disease centers. Alzheimer Disease and Associated Disorders, 20, 210216.
Nowrangi, M. A., Rao, V. and Lyketsos, C. G. (2011). Epidemiology, assessment, and treatment of dementia. The Psychiatric Clinics of North America, 34, 275294, vii.
Okonkwo, O. C. et al. (2008). Cognitive models of medical decision-making capacity in patients with mild cognitive impairment. Journal of the International Neuropsychological Society, 14, 297308.
Oulhaj, A., Wilcock, G. K., Smith, A. D. and de Jager, C. A. (2009). Predicting the time of conversion to MCI in the elderly: role of verbal expression and learning. Neurology, 73, 14361442.
Panza, F. et al. (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. The American Journal of Geriatric Psychiatry, 13, 633644.
Pereira, F. S. et al. (2010). Profiles of functional deficits in mild cognitive impairment and dementia: benefits from objective measurement. Journal of the International Neuropsychological Society, 16, 297305.
Peres, K., Chrysostome, V., Fabrigoule, C., Orgogozo, J. M., Dartigues, J. F. and Barberger-Gateau, P. (2006). Restriction in complex activities of daily living in MCI: impact on outcome. Neurology, 67, 461466.
Perneczky, R. et al. (2006). Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues. Age and Ageing, 35, 240245.
Petersen, R. C. et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 19851992.
Petersen, R. C. et al. (2009). Mild cognitive impairment: ten years later. Archives of Neurology, 66, 14471455.
Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H. Jr., Chance, J. M. and Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37, 323329.
Pinto, C. and Subramanyam, A. A. (2009). Mild cognitive impairment: the dilemma. Indian Journal of Psychiatry, 51 (Suppl. 1), S44S51.
Reinvang, I., Grambaite, R. and Espeseth, T. (2012). Executive dysfunction in MCI: subtype or early symptom. International Journal of Alzheimer's Disease, 2012, 936272.
Reitan, R. M. (1955). The relation of the trail making test to organic brain damage. Journal of Consulting Psychology, 19, 393394.
Reppermund, S. et al. (2011). The relationship of neuropsychological function to instrumental activities of daily living in mild cognitive impairment. International Journal of Geriatric Psychiatry, 26, 843852.
Reppermund, S. et al. (2013). Impairment in instrumental activities of daily living with high cognitive demand is an early marker of mild cognitive impairment: the Sydney memory and ageing study. Psychological Medicine, 43, 24372445.
Royall, D. R., Lauterbach, E. C., Kaufer, D., Malloy, P., Coburn, K. L. and Black, K. J. (2007). The cognitive correlates of functional status: a review from the committee on research of the American neuropsychiatric association. Journal of Neuropsychiatry Clinical Neurosciences, 19, 249265.
Royall, D. R., Palmer, R., Chiodo, L. K. and Polk, M. J. (2005). Normal rates of cognitive change in successful aging: the freedom house study. Journal of the International Neuropsychological Society, 11, 899909.
Royall, D. R. et al. (2002). Executive control function: a review of its promise and challenges for clinical research. A report from the committee on research of the American neuropsychiatric association. Journal of Neuropsychiatry Clinical Neurosciences, 14, 377405.
Salthouse, C. D., Reynolds, F., Tam, J. M., Josephson, L. and Mahmood, U. (2010). When does age-related cognitive decline begin? Neurobiology of Aging, 30, 507514.
Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics, 2, 110114.
Shankle, W. R. et al. (2013). Relating memory to functional performance in normal aging to dementia using hierarchical Bayesian cognitive processing models. Alzheimer Disease and Associated Disorders, 27, 1622.
Sperling, R. A. et al. (2013). Amyloid deposition detected with florbetapir F 18 ((18)F-AV-45) is related to lower episodic memory performance in clinically normal older individuals. Neurobiology of Aging, 34, 822831.
Stoeckel, L. E. et al. (2013). MRI volume of the medial frontal cortex predicts financial capacity in patients with mild Alzheimer's disease. Brain Imaging and Behavior, 7, 282292.
Tabert, M. H. et al. (2002). Functional deficits in patients with mild cognitive impairment: prediction of AD. Neurology, 58, 758764.
Tuokko, H., Morris, C. and Ebert, P. (2005). Mild cognitive impairment and everyday functioning in older adults. Neurocase, 11, 4047.
Vallotti, B. et al. (2001). Determinants of functional status in Alzheimer's disease and vascular dementia. Archives of Gerontology and Geriatrics Supplement, 7, 419428.
Visser, P. J., Kester, A., Jolles, J. and Verhey, F. (2006). Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology, 67, 12011207.
Wadley, V. G. et al. (2007). Changes in everyday function in individuals with psychometrically defined mild cognitive impairment in the advanced cognitive training for independent and vital elderly study. Journal of the American Geriatrics Society, 55, 11921198.
Wechsler, D. (1939). The Measurement of Adult Intelligence. Baltimore, MD: Williams & Witkins.
Weintraub, S. et al. (2009). The Alzheimer's disease centers' uniform data set (UDS): the neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23, 91101.
Yesavage, J. A. (1988). Geriatric depression scale. Psychopharmacology Bulletin, 24, 709711.

Keywords

Related content

Powered by UNSILO

Subtle changes in daily functioning predict conversion from normal to mild cognitive impairment or dementia: an analysis of the NACC database

  • Milap A. Nowrangi (a1), Paul B. Rosenberg (a1) and Jeannie-Marie S. Leoutsakos (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.