Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T09:25:54.607Z Has data issue: false hasContentIssue false

AGN-driven Turbulence in Galaxy Clusters

Published online by Cambridge University Press:  20 January 2011

M. Brüggen
Affiliation:
Jacobs University Bremen, PO Box 750561, 28725 Bremen, Germany
E. Scannapieco
Affiliation:
School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85287-1404, USA
Get access

Abstract

Hot, underdense bubbles powered by active galactic nuclei (AGN) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive-mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. Pure-hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas. However, proper modeling of subgrid turbulence shows that Rayleigh-Taylor instabilities act to mix the heated regions with their surroundings, while at the same time preserving them as coherent structures, consistent with observations. Thus bubbles are transformed into hot clouds of mixed material as they move outwards in the hydrostatic intracluster medium. Properly capturing the evolution of such clouds has important implications for many ICM properties.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Blanton, E.L., Sarazin, C.L., McNamara, B.R., & Wise, M.W., 2001, ApJ, 558, L15 CrossRef
Brüggen, M., Ruszkowski, M., & Hallman, E., 2005, ApJ, 630, 740 CrossRef
Dimonte, G., & Tipton, R., 2006, Physics of Fluids, 18, 085101 CrossRef
Finoguenov, A., & Jones, C., 2001, ApJ, 547, L107 CrossRef
Glimm, J., Grove, J.W., Li, X.L., Oh, W., & Sharp, D.H., 2001, J. Comput. Phys., 169, 652 CrossRef
Heinz, S., Brüggen, M., Young, A., & Levesque, E., 2006, MNRAS, 373, L65 CrossRef
Jones, T.W., & De Young, D.S., 2005, ApJ, 624, 586 CrossRef
McNamara, B.R., Nulsen, P.E.J., 2007, ARA&A, 45, 117 CrossRef
McNamara, B.R., Wise, M., Nulsen, P.E.J., et al., 2000, ApJ, 534, L135 CrossRef
Nulsen, P.E.J., Hambrick, D.C., McNamara, B.R., et al., 2005, ApJ, 625, L9 CrossRef
Nulsen, P.E.J., David, L.P., McNamara, B.R., et al., 2002, ApJ, 568, 163 CrossRef
Pizzolato, F., & Soker, N., 2006, MNRAS, 371, 1835 CrossRef
Rebusco, P., Churazov, E., Böhringer, H., & Forman, W., 2005, MNRAS, 359, 1041 CrossRef
Reynolds, C. S., McKernan, B., Fabian, A.C., et al., 2005, MNRAS, 357, 242 CrossRef
Robinson, K., Dursi, L.J., Ricker, P.M., et al., 2004, ApJ, 601, 621 CrossRef
Ruszkowski, M., Enßlin, T.A., Brüggen, M., Heinz, S., & Pfrommer, C., 2007, MNRAS, 378, 662 CrossRef
Sanders, J.S., & Fabian, A.C., 2007, MNRAS, 381, 1381 CrossRef
Sanders, J.S., & Fabian, A.C., 2008, MNRAS, 390, L93 CrossRef
Sanders, J.S., Fabian, A.C., Allen, S.W., & Schmidt, R.W., 2004, MNRAS, 349, 952 CrossRef
Scannapieco, E., & Brüggen, M., 2008, ApJ, 686, 927 CrossRef
Simionescu, A., Werner, N., Finoguenov, A., Böhringer, H., & Brüggen, M., 2008, A&A, 482, 97