Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:24:55.266Z Has data issue: false hasContentIssue false

Exponential multiple mixing for commuting automorphisms of a nilmanifold

Published online by Cambridge University Press:  11 October 2023

TIMOTHÉE BÉNARD*
Affiliation:
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK (e-mail: pv270@dpmms.cam.ac.uk)
PÉTER P. VARJÚ
Affiliation:
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK (e-mail: pv270@dpmms.cam.ac.uk)
*

Abstract

Let $l\in \mathbb {N}_{\ge 1}$ and $\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$ be an action of $\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\mathscr{N}$. We assume the action of every $\alpha (z)$ is ergodic for $z\in \mathbb {Z}^l\smallsetminus \{0\}$ and show that $\alpha $ satisfies exponential n-mixing for any integer $n\geq 2$. This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auslander, L., Green, L. and Hahn, F.. Flows on Homogeneous Spaces (Annals of Mathematics Studies, 53). Princeton University Press, Princeton, NJ, 1963; with the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg.CrossRefGoogle Scholar
Bombieri, E. and Gubler, W.. Heights in Diophantine Geometry (New Mathematical Monographs, 4). Cambridge University Press, Cambridge, 2006.Google Scholar
Dolgopyat, D.. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356(4) (2004), 16371689.CrossRefGoogle Scholar
Evertse, J.-H.. On sums of $S$ -units and linear recurrences. Compos. Math. 53(2) (1984), 225244.Google Scholar
Evertse, J.-H. and Győry, K.. Unit Equations in Diophantine Number Theory (Cambridge Studies in Advanced Mathematics, 146). Cambridge University Press, Cambridge, 2015.CrossRefGoogle Scholar
Farrell, F. T. and Jones, L. E.. Anosov diffeomorphisms constructed from ${\pi}_1\mathrm{Diff}({S}^n)$ . Topology 17(3) (1978), 273282.CrossRefGoogle Scholar
Fisher, D., Kalinin, B. and Spatzier, R.. Totally nonsymplectic Anosov actions on tori and nilmanifolds. Geom. Topol. 15(1) (2011), 191216.CrossRefGoogle Scholar
Fisher, D., Kalinin, B. and Spatzier, R.. Global rigidity of higher rank Anosov actions on tori and nilmanifolds. J. Amer. Math. Soc. 26(1) (2013), 167198; with an appendix by J. F. Davis.CrossRefGoogle Scholar
Gorodnik, A. and Spatzier, R.. Exponential mixing of nilmanifold automorphisms. J. Anal. Math. 123 (2014), 355396.CrossRefGoogle Scholar
Gorodnik, A. and Spatzier, R.. Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215(1) (2015), 127159.CrossRefGoogle Scholar
Green, B. and Tao, T.. The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) 175(2) (2012), 465540.CrossRefGoogle Scholar
Green, L. W.. Spectra of nilflows. Bull. Amer. Math. Soc. (N.S.) 67 (1961), 414415.CrossRefGoogle Scholar
Lind, D. A.. Dynamical properties of quasihyperbolic toral automorphisms. Ergod. Th. & Dynam. Sys. 2(1) (1982), 4968.CrossRefGoogle Scholar
Masser, D.. Auxiliary Polynomials in Number Theory (Cambridge Tracts in Mathematics, 207). Cambridge University Press, Cambridge, 2016.CrossRefGoogle Scholar
Miles, R. and Ward, T.. A directional uniformity of periodic point distribution and mixing. Discrete Contin. Dyn. Syst. 30(4) (2011), 11811189.CrossRefGoogle Scholar
Parry, W.. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969), 757771.CrossRefGoogle Scholar
Rodriguez Hertz, F. and Wang, Z.. Global rigidity of higher rank abelian Anosov algebraic actions. Invent. Math. 198(1) (2014), 165209.CrossRefGoogle Scholar
Schmidt, K. and Ward, T.. Mixing automorphisms of compact groups and a theorem of Schlickewei. Invent. Math. 111(1) (1993), 6976.CrossRefGoogle Scholar