Skip to main content Accessibility help
×
Home

Isolation of Mycobacterium avium subspecies paratuberculosis from non-ruminant wildlife living in the sheds and on the pastures of Greek sheep and goats

  • M. FLOROU (a1), L. LEONTIDES (a1), P. KOSTOULAS (a1), C. BILLINIS (a2), M. SOFIA (a2), I. KYRIAZAKIS (a3) and F. LYKOTRAFITIS (a4)...

Summary

This study aimed to: (1) investigate whether non-ruminant wildlife interfacing with dairy sheep and goats of four Greek flocks endemically infected with Mycobacterium avium subspecies paratuberculosis (MAP) harboured MAP and (2) genetically compare the strains isolated from the wildlife to those isolated from the small ruminants of these flocks. We cultured and screened, by polymerase chain reaction (PCR), pooled-tissue samples from 327 wild animals of 11 species for the MAP-specific IS900 insertion sequence. We also cultured faecal samples from 100 sheep or goats from each of the four flocks. MAP was detected in samples from 11 sheep, 12 goats, two mice, two rats, a hare and a fox. Only one rat had histopathological findings. Genetic typing categorized 21 isolates as cattle-type strains and two, from a house mouse and a goat respectively, as sheep-type strains; this is the first report of a rodent harbouring a sheep-type strain. The MAP types that were most frequently isolated amongst the sheep and goats of each flock were also the ones isolated from sympatric rodents; those isolated from the fox and hare also belonged to the predominant ruminant strains.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Isolation of Mycobacterium avium subspecies paratuberculosis from non-ruminant wildlife living in the sheds and on the pastures of Greek sheep and goats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Isolation of Mycobacterium avium subspecies paratuberculosis from non-ruminant wildlife living in the sheds and on the pastures of Greek sheep and goats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Isolation of Mycobacterium avium subspecies paratuberculosis from non-ruminant wildlife living in the sheds and on the pastures of Greek sheep and goats
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Professor L. Leontides, Laboratory of Epidemiology, Biostatistics and Economics of Animal Production, School of Veterinary Medicine, University of Thessaly, 224 Trikalon st., 43100 Karditsa, Greece. (Email: leoleont@vet.uth.gr)

References

Hide All
1. Daniels, MJ, et al. Do non-ruminant wildlife pose a risk of paratuberculosis to domestic livestock and vice versa in Scotland? Journal of Wildlife Diseases 2003; 39: 1015.
2. Williams, ES, Spraker, TR, Schoonveld, GG. Paratuberculosis (Johne's disease) in bighorn sheep and a rocky mountain goat in Colorado. Journal of Wildlife Diseases 1979; 15: 221227.
3. Jessup, DA, et al. Paratuberculosis in tule elk in California. Journal of the American Veterinary Medical Association 1981; 179: 12521254.
4. Chiodini, RJ, Vankruiningen, HJ. Eastern white-tailed deer as a reservoir of ruminant paratuberculosis. Journal of the American Veterinary Medical Association 1983; 182: 168169.
5. Delisle, GW, Yates, GR, Collins, DM. Paratuberculosis in farmed deer: case reports and DNA characterization of isolates of Mycobacterium paratuberculosis. Journal of Veterinary Diagnostic Investigation 1993; 5: 567571.
6. Buergelt, CD, et al. The pathology of spontaneous paratuberculosis in the North American bison (Bison bison). Veterinary Pathology 2000; 37: 428438.
7. Mathews, PRJ, Sargent, A. The isolation of mycobacteria from the brown hare (Lepus europaeus). British Veterinary Journal 1977; 133: 399404.
8. Beard, PM, et al. Natural paratuberculosis infection in rabbits in Scotland. Journal of Comparative Pathology 2001; 124: 290299.
9. Raizman, EA, et al. Mycobacterium avium subsp. paratuberculosis from free-ranging deer and rabbits surrounding Minnesota dairy herds. Canadian Journal of Veterinary Research 2005; 69: 3238.
10. Corn, JL, et al. Isolation of Mycobacterium avium subspecies paratuberculosis from free-ranging birds and mammals on livestock premises. Applied and Environmental Microbiology 2005; 71: 69636967.
11. Beard, PM, et al. Paratuberculosis infection of non-ruminant wildlife in Scotland. Journal of Clinical Microbiology 2001; 39: 15171521.
12. Deutz, A, et al. Mycobacterium avium subsp. paratuberculosis in wild animal species and cattle in Styria/Austria. Berliner und Münchener tierärztliche Wochenschrift 2005; 118: 314320.
13. Machackova, M, et al. Wild boar (Sus scrofa) as a possible vector of mycobacterial infections: review of literature and critical analysis of data from Central Europe between 1983 and 2001. Veterinarni Medicina 2003; 48: 5165.
14. Alvarez, J, et al. Mycobacterium avium subspecies paratuberculosis in fallow deer and wild boar in Spain. Veterinary Record 2005; 156: 212213.
15. Cousins, DV, et al. DNA fingerprinting of Australian isolates of Mycobacterium avium subsp. paratuberculosis using IS900 RFLP. Australian Veterinary Journal 2000; 78: 184190.
16. Angus, K. Intestinal lesions resembling paratuberculosis in a wild rabbit (Oryctolagus cuniculus). Journal of Comparative Pathology 1990; 103: 2223.
17. Greig, A, et al. Paratuberculosis in wild rabbits (Oryctolagus cuniculus). Veterinary Record 1997; 140: 141143.
18. Greig, A, et al. Epidemiological study of paratuberculosis in wild rabbits in Scotland. Journal of Clinical Microbiolgy 1999; 37: 17461751.
19. Beard, PM, et al. Evidence of paratuberculosis in fox (Vulpes vulpes) and stoat (Mustela erminea). Veterinary Record 1999; 145: 612613.
20. Collins, DM, Gabric, DM, De Lisle, GE. Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization. Journal of Clinical Microbiology 1990; 28: 15911596.
21. Whittington, RJ, et al. Polymorphisms in IS1311, an insertion sequence common to Mycobacterium avium and Mycobacterium avium subsp. paratuberculosis, can be used to distinguish between and within these species. Molecular and Cellular Probes 1998; 12: 349358.
22. Pavlik, I, et al. Standardisation of restriction fragment length polymorphism analysis for Mycobacterium avium subspecies paratuberculosis. Journal of Microbiological Methods 1999; 38: 155167.
23. Stevenson, K, et al. Molecular characterization of pigmented and nonpigmented isolates of Mycobacterium avium subsp. paratuberculosis. Journal of Clinical Microbiology 2002; 40: 17981804.
24. Dimarelli, Z, et al. A survey of ovine and caprine paratuberculosis in the Thessaloniki area, Greece. Paratuberculosis Newsletter 1991; 3: 89.
25. Whitlock, RH, Rosenberger, AE. Fecal culture protocol for Mycobacterium paratuberculosis a recommended procedure. In: Proceedings of the 94th Annual Meeting of the US Animal Health Association. U.S. Animal Health Association, Denver, Colorado, 1990; pp. 280285.
26. Millar, DS, et al. Solid-phase hybridization capture of low-abundance target DNA sequences: application to the polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp. silvaticum. Analytical Biochemistry 1995; 226: 325330.
27. Marsh, I, Whittington, R, Cousins, D. PCR-restriction endonuclease analysis for identification and strain typing of Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium based on polymorphisms in IS1311. Molecular and Cellular Probes 1999; 13: 115126.
28. Harris, NB, Barletta, RG. Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clinical Microbiology Reviews 2001; 14: 489512.
29. Whittington, RJ, et al. Isolation of Mycobacterium avium subsp. paratuberculosis from environmental samples collected from farms before and after destocking sheep with paratuberculosis. Australian Veterinary Journal 2003; 81: 559563.
30. Haydon, DT, et al. Identifying reservoirs of infection: a conceptual and practical challenge. Emerging Infectious Diseases 2002; 8: 14681473.
31. Judge, J, et al. Clustering of Mycobacterium avium subsp. paratuberculosis in rabbits and the environment: how hot is a hot spot? Applied and Environmental Microbiology 2005; 71: 60336038.
32. Judge, J, et al. Routes of intraspecies transmission of Mycobacterium avium subsp. paratuberculosis in rabbits (Oryctolagus cuniculus): a field study. Applied and Environmental Microbiology 2006; 72: 398403.
33. Daniels, MJ, et al. The grazing response of cattle to pasture contaminated with rabbit faeces and the implications for the transmission of paratuberculosis. Veterinary Journal 2001; 161: 306313.
34. Pavlik, I, et al. Characterization by restriction endonuclease analysis and DNA hybridization using IS900 of bovine, ovine, caprine and human dependent strains of Mycobacterium paratuberculosis isolated in various localities. Veterinary Microbiology 1995; 45: 311318.
35. Whittington, RJ, et al. Evaluation of modified BACTEC 12B radiometric medium and solid media for culture of Mycobacterium avium subsp. paratuberculosis from sheep. Journal of Clinical Microbiology 1999; 37: 10771083.
36. De Juan, L, et al. Comparison of four different culture media for isolation and growth of type II and type I/III Mycobacterium avium subsp. paratuberculosis strains isolated from cattle and goats. Applied and Environmental Microbiology 2006; 72: 59275932.
37. Reddacliff, LA, Vadali, A, Whittington, RJ. The effect of decontamination protocols on the numbers of sheep strain Mycobacterium avium subsp. paratuberculosis isolated from tissues and faeces. Veterinary Microbiology 2003; 95: 271282.
38. Collins, DM, Cavaignac, S, De Lisle, GW. Use of four DNA insertion sequences to characterize strains of the Mycobacterium avium complex isolated from animals. Molecular and Cellular Probes 1997; 11: 373380.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed