Skip to main content Accessibility help
×
Home

Estimating within-flock transmission rate parameter for H5N2 highly pathogenic avian influenza virus in Minnesota turkey flocks during the 2015 epizootic

  • A. Ssematimba (a1) (a2), S. Malladi (a1), T. J. Hagenaars (a3), P. J. Bonney (a1), J. T. Weaver (a4), K. A. Patyk (a4), E. Spackman (a5), D. A. Halvorson (a1) and C. J. Cardona (a1)...

Abstract

Better control of highly pathogenic avian influenza (HPAI) outbreaks requires deeper understanding of within-flock virus transmission dynamics. For such fatal diseases, daily mortality provides a proxy for disease incidence. We used the daily mortality data collected during the 2015 H5N2 HPAI outbreak in Minnesota turkey flocks to estimate the within-flock transmission rate parameter (β). The number of birds in Susceptible, Exposed, Infectious and Recovered compartments was inferred from the data and used in a generalised linear mixed model (GLMM) to estimate the parameters. Novel here was the correction of these data for normal mortality before use in the fitting process. We also used mortality threshold to determine HPAI-like mortality to improve the accuracy of estimates from the back-calculation approach. The estimated β was 3.2 (95% confidence interval (CI) 2.3–4.3) per day with a basic reproduction number of 12.8 (95% CI 9.2–17.2). Although flock-level estimates varied, the overall estimate was comparable to those from other studies. Sensitivity analyses demonstrated that the estimated β was highly sensitive to the bird-level latent period, emphasizing the need for its precise estimation. In all, for fatal poultry diseases, the back-calculation approach provides a computationally efficient means to obtain reasonable transmission parameter estimates from mortality data.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimating within-flock transmission rate parameter for H5N2 highly pathogenic avian influenza virus in Minnesota turkey flocks during the 2015 epizootic
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimating within-flock transmission rate parameter for H5N2 highly pathogenic avian influenza virus in Minnesota turkey flocks during the 2015 epizootic
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimating within-flock transmission rate parameter for H5N2 highly pathogenic avian influenza virus in Minnesota turkey flocks during the 2015 epizootic
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: A. Ssematimba, E-mail: amos.ssematimba@gmail.com

References

Hide All
1.USDA APHIS VS (2016) Final Report for the 2014–2015 Outbreak of Highly Pathogenic Avian Influenza (HPAI) in the United States: August 11, 2016. Available at https://www.aphis.usda.gov/animal_health/emergency_management/downloads/hpai/presentation/finalreport14-15_shortppt.pdf (Accessed 17 September 2018).
2.Dargatz, D et al. (2016) Case series of turkey farms from the H5N2 highly pathogenic avian influenza outbreak in the United States during 2015. Avian Diseases 60, 467472.
3.Greene, JL (2015) Update on the Highly-Pathogenic Avian Influenza Outbreak of 2014–2015. Congressional Research Service. Available at https://fas.org/sgp/crs/misc/R44114.pdf.
4.Ssematimba, A et al. (2018) Quantifying the effect of swab pool size on the detection of influenza A viruses in broiler chickens and its implications for surveillance. BMC Veterinary Research 14, 265.
5.De Jong, MC, Diekmann, O and Heesterbeek, JA (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity. Mathematical Biosciences 119, 97114.
6.Van Nes, A et al. (1998) Implications derived from a mathematical model for eradication of pseudorabies virus. Preventive Veterinary Medicine 33, 3958.
7.Spickler, AR, Trampel, DW and Roth, JA (2012) The Onset of Virus Shedding and Clinical Signs in Turkeys Infected with High and Low Pathogenicity Avian Influenza Viruses. Available at http://www.cfsph.iastate.edu/HPAI/resources/AvFlu-turkeys11May2012.Spickler.pdf (Accessed 19 May 2016).
8.Diekmann, O, Heesterbeek, JAP and Metz, JAJ (1990) On the definition and the computation of the basic reproduction ratio r0 in models for infectious-diseases in heterogeneous populations. Journal of Mathematical Biology 28, 365382.
9.Malladi, S. et al. (2016) Evaluation of Mortality Triggers for Detecting HPAI in Meat Turkey Premises. In The 9th International Symposium on Avian Influenza, April 12-15, 2015 2016. Athens, Georgia, USA: AAAP.
10.Malladi, S et al. (2011) Moving-average trigger for early detection of rapidly increasing mortality in caged table-egg layers. Avian Diseases 55, 603610.
11.Ssematimba, A et al. (2018) Mortality-based triggers and pre-movement testing protocols for detection of highly pathogenic avian influenza virus infection in commercial upland game birds. Avian Diseases 63(sp1), 157164.
12.Gonzales, JL and Elbers, ARW (2018) Effective thresholds for reporting suspicions and improve early detection of avian influenza outbreaks in layer chickens. Scientific Reports 8, 8533.
13.Bos, M et al. (2009) Back-calculation method shows that within-flock transmission of highly pathogenic avian influenza (H7N7) virus in the Netherlands is not influenced by housing risk factors. Preventive Veterinary Medicine 88, 278285.
14.Spackman, E et al. (2016) H5n2 highly pathogenic avian influenza viruses from the US 2014–2015 outbreak have an unusually long pre-clinical period in turkeys. BMC Veterinary Research 12, 260260.
15.Cardona, C et al. An Assessment of the Risk Associated with the Movement of Turkeys to Market Into, Within, and Out of a Control Area during a Highly Pathogenic Avian Influenza Outbreak in the United States. 2018, Collaborative agreement between USDA:APHIS:VS and University of Minnesota Center for Secure Food Systems: Fort Collins, CO. p. 217.
16.Mutinelli, F et al. (2003) Clinical, gross, and microscopic findings in different avian species naturally infected during the H7N1 low-and high-pathogenicity avian influenza epidemics in Italy during 1999 and 2000. Avian Diseases 47, 844848.
17.De Benedictis, P et al. (2007) Field and laboratory findings of the first incursion of the Asian h5n1 highly pathogenic avian influenza virus in Africa. Avian Pathology 36, 115117.
18.Alexander, D, Parsons, G and Manvell, R (1986) Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathology 15, 647662.
19.Slemons, RD and Easterday, B (1972) Host response differences among 5 avian species to an influenza virus – A/turkey/Ontario/7732/66 (Hav5N?). Bulletin of the World Health Organization 47, 521.
20.Dietz, K and Schenzle, D (1985) Proportionate mixing models for age-dependent infection transmission. Journal of Mathematical Biology 22, 117120.
21.Becker, NG (1989) Analysis of Infectious Disease Data. London: Chapman and Hall.
22.Ssematimba, A et al. (2018) Estimating the between-farm transmission rates for highly pathogenic avian influenza subtype H5N1 epidemics in Bangladesh between 2007 and 2013. Transboundary and Emerging Diseases 65, e127e134.
23.van der Goot, JA et al. (2005) Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proceedings of the National Academy of Sciences of the USA 102, 1814118146.
24.Bates, D et al. (2015) Fitting linear Mixed-Effects Models using lme4. Journal of Statistical Software 67, 148.
25.R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org/.
26.Bouma, A et al. (2009) Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLoS Pathogens 5, e1000281.
27.Saenz, RA et al. (2012) Quantifying transmission of highly pathogenic and low pathogenicity h7n1 avian influenza in turkeys. PLoS ONE 7, e45059.
28.Bos, MEH et al. (2008) Effect of H7N1 vaccination on highly pathogenic avian influenza h7n7 virus transmission in turkeys. Vaccine 26, 63226328.
29.Bos, ME et al. (2010) Within-flock transmission of H7N1 highly pathogenic avian influenza virus in turkeys during the Italian epidemic in 1999–2000. Preventive Veterinary Medicine 95, 297300.
30.Tiensin, T et al. (2007) Transmission of the highly pathogenic avian influenza virus H5N1 within flocks during the 2004 epidemic in Thailand. Journal of Infectious Diseases 196, 16791684.
31.McCallum, H, Barlow, N and Hone, J (2001) How should pathogen transmission be modelled? Trends in Ecology & Evolution 16, 295300.
32.Thrall, PH, Biere, A and Uyenoyama, MK (1995) Frequency-dependent disease transmission and the dynamics of the Silene-Ustilago host-pathogen system. The American Naturalist 145, 4362.
33.Begon, M et al. (2002) A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiology and Infection 129, 147153.

Keywords

Related content

Powered by UNSILO

Estimating within-flock transmission rate parameter for H5N2 highly pathogenic avian influenza virus in Minnesota turkey flocks during the 2015 epizootic

  • A. Ssematimba (a1) (a2), S. Malladi (a1), T. J. Hagenaars (a3), P. J. Bonney (a1), J. T. Weaver (a4), K. A. Patyk (a4), E. Spackman (a5), D. A. Halvorson (a1) and C. J. Cardona (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.