Published online by Cambridge University Press: 01 January 2024
The results from mesoscale simulations of the formation and evolution of microstructure for assemblies of Na-smectite particles based on assumed size distributions of individual clay platelets are presented here. The analyses predicted particle arrangements and aggregation (i.e. platelets linked in face—face configurations) and are used to link geometric properties of the microstructure and mechanical properties of the particle assemblies. Interactions between individual ellipsoidal clay platelets are represented using the Gay-Berne potential based on atomistic simulations of the free energy between two Na-smectite clay-platelets in liquid water, following a novel coarse-graining method developed previously. The current study describes the geometric (aggregate thickness, orientation, and porosity) and elastic properties in the ‘jammed states’ from the mesoscale simulations for selected ranges of clay particle sizes and confining pressures. The thickness of clay aggregates for monodisperse assemblies increases (with average stack thickness consisting of n = 3–8 platelets) with the diameter of the individualclay platelets and with the level of confining pressure. Aggregates break down at high confining pressures (50–300 atm) due to slippage between the platelets. Polydisperse simulations generate smaller aggregates (n = 2) and show much smaller effects of confining pressure. All assemblies show increased order with confining pressure, implying more anisotropic microstructure. The mesoscale simulations are also in good agreement with macroscopic compression behavior measured in conventional 1-D laboratory compression tests. The mesoscale assemblies exhibit cubic symmetry in elastic properties. The results for larger platelets (D = 1000 Å) are in good agreement with nano-indentation measurements on natural clays and shale samples.
This paper is published as part of a special issue on the subject of ‘Computational Molecular Modeling’. Some of the papers were presented during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.