Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T16:43:06.011Z Has data issue: false hasContentIssue false

Clay minerals related to the late magmatic activity of the Piton des Neiges (Réunion Island): consequence for the primitive crusts

Published online by Cambridge University Press:  23 January 2019

Gilles Berger
Affiliation:
IRAP, CNRS, UPS, Observatoire Midi-Pyrénées, 14 Av. E. Belin, 31400 Toulouse, France
Daniel Beaufort
Affiliation:
IC2MP, Université Poitiers, 40 Av. Recteur Pineau, 86022 Poitiers Cedex, France
Raphaël Antoine*
Affiliation:
IRAP, CNRS, UPS, Observatoire Midi-Pyrénées, 14 Av. E. Belin, 31400 Toulouse, France CEREMA Normandie-Centre, 76121 Le Grand Quevilly, France

Abstract

This paper describes a detailed petrographic and isotopic study of hypabyssal sheets of quartz-syenite that represent the ultimate differentiation product of the oceanite alkaline magmatic reservoir of the Piton des Neiges stratovolcano (Réunion Island). Clay minerals of the corrensite to chlorite series crystallized during the late-magmatic activity, with quartz, carbonates and accessory minerals from juvenile fluids filling the primary porosity of the quartz-syenite. It is proposed that a double chemical transfer occurred at the end of the crystallization process: degassing of the exsolved CO2-rich and SiO2-rich fluid from the magmatic chamber through the porous quartz-syenite and diffusion of Al, Fe and Mg from the intruded basalts affected by the juvenile fluids towards the primary porosity of the quartz-syenite, feeding the crystallization of late-magmatic clays in the residual primary pores after quartz and carbonate deposition. This process may be generalized to alkaline plutonism, as well as to the primitive crusts of terrestrial planets, and may be the first source of clays in early planets.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: M. Buatier

References

REFERENCES

Alt, J.-C. (1999) Very low grade hydrothermal metamorphism of basaltic igneous rocks. Pp. 169201 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Cambridge, UK.Google Scholar
Barrenechea, J.F., Rodas, M., Frey, M., Alonso-Azcarte, J., & Mas, J.R. (2000) Chlorite, corrensite and chlorite-mica in late Jurassic fluvio-lacrustine sediments of the Cameros Basin northeastern Spain. Clays and Clay Minerals, 48, 256265.Google Scholar
Beaufort, D. & Meunier, A. (1994) Saponite, corrensite and chlorite-saponite mixed layers in the Sancerre-Couy deep drill-hole (France). Clay Minerals, 29, 4761.Google Scholar
Beaufort, D., Baronnet, A., Lanson, B. & Meunier, A. (1997) Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109124.Google Scholar
Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S. & Patrier, P. (2015) Chlorite and chloritization processes through mixed layer mineral series in low-temperature geological systems – a review. Clay Minerals, 50, 497523.Google Scholar
Berger, G., Meunier, A. & Beaufort, D. (2014) Clay minerals formation on Mars: the possible contribution of basalt out-gassing. Planetary and Space Science, 95, 2532.Google Scholar
Berger, G., Turpault, M.P. & Meunier, A. (1992) Dissolution–precipitation processes induced by hot water in a fractured granite. Part 2: modeling of water rock interaction. European Journal of Mineralogy, 4, 14771488.Google Scholar
Bettison-Varga, L. & Mackinnon, I.D.R. (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45, 506516.Google Scholar
Bibring, J.-P., Langevin, Y., Mustard, J.F. et al. (2006) Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science, 312, 400404.Google Scholar
Cannon, K.M., Parman, S.W. & Mustard, J.F. (2017) Primordial clays on Mars formed beneath a steam or supercritical atmosphere. Nature, 552, 8891.Google Scholar
Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D.C., Ruff, SW, Chassefiere, E., Niles, P.B. & Poulet, F. (2013) Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust. Space Science Reviews, 174, 329364.Google Scholar
Fleet, M.E. (2003) Muscovite and phengite. Pp. 41286 in: Rock-Forming Minerals, Vol. 3A, Micas, 2nd edition. The Geological Society, London, UK.Google Scholar
Forget, F., Wordsworth, R., Millour, E., Madeleine, J.-B., Kerber, L., Leconte, J., Marcq, E. & Haberle, R.M. (2013) 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus, 222, 8199.Google Scholar
Fugamalli, P., Stixrude, L., Poli, S. & Snyder, D. (2001) The 10 Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth and Planetary Science Letters, 186, 125141.Google Scholar
Graetsch, H. (1994) Structural characteristics of opaline and microcrystalline silica minerals. Reviews in Mineralogy, 29, 209232.Google Scholar
Hermann, J., Zhen, Y.-F. & Rubarto, D. (2013) Deep fluids in subducted continental crust. Elements, 9, 281287.Google Scholar
Holk, G.J., & Taylor, H. Jr (2007) 18O/16O evidence for contrasting hydrothermal regimes involving magmatic and meteoric–hydrothermal waters at the Valhalla Metamorphic Core Complex, British Columbia. Economic Geology, 102, 10631078.Google Scholar
Iiyama, J.T. & Roy, R. (1963) Unusually stable saponite in the system Na2O–MgO–Al2O3–SiO2. Clay Minerals Bulletin, 5, 161171.Google Scholar
Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alteration, Hokuroku Kuroko mineralization area, northeast Japan. Pp. 158164 in: Proceedings of the International Clay Conference, Denver (Schultz, L.G., Van Olphen, H. & Mumpton, F.A., editors). The Clay Minerals Society, Bloomington, IN, USA.Google Scholar
Koizumi, M. & Roy, R. (1959) Synthetic montmorillonoids with variable exchange capacity. American Mineralogist, 44, 788805.Google Scholar
Kristmannsdottir, H. (1979) Alteration of basaltic rocks by hydrothermal activity at 100-300°C. Pp. 359367 in: Proceedings of the International Clay Conference, 1978 (Mortland, M.M. & Farmer, V.C., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Kokh, M.A., Akinfiev, N.N., Pokrovski, G.S., Salvi, S. & Guillaume, D. (2017) The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochimica et Cosmochimica Acta, 197, 433466.Google Scholar
Meunier, A., Mas, A., Beaufort, D., Patrier, P. & Dudoignon, P. (2008) Clay minerals in basalt-hawaiite rocks from Mururoa atoll, French Polynesia. II. Petrography and Geochemistry. Clays and Clay Minerals, 56, 730750.Google Scholar
Meunier, A., Petit, S., Ehlmann, B.L., Dudoignon, P., Westall, F., Mas, A.El Albani, A. & Ferrage, E. (2012) Magmatic precipitation as a possible origin of Noachian clays on Mars. Nature Geoscience, 5, 739743.Google Scholar
Ohtani, E. (2005) Water in the mantle. Elements, 1, 2530.Google Scholar
Plyasunov, A.V. (2011) Thermodynamic properties of H4SiO4 in the ideal gas state as evaluated from experimental data. Geochimica et Cosmochimica Acta, 75, 38533865.Google Scholar
Rançon, J.P. (1985) Hydrothermal history of Piton des Neiges volcano (Reunion Island, Indian Ocean). Journal of Volcanology and Geothermal Research, 26, 297315.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structure of Clay Minerals and Their X-Ray Identification (Brindley, G.W. & Brown, G., editors). Mineral Society, London, UK.Google Scholar
Riley, T.R., Bailey, D.K., Harmer, R.E., Liebsch, H., Lloyd, F.E. & Palmer, M.R. (1999) Isotopic and geochemical investigation of a carbonatite-syenite-phonolite diatreme, West Eifel (Germany). Mineralogical Magazine, 63, 615631.Google Scholar
Roberson, H.E., Reynolds, R.C. & Jenkins, D.M. (1999) Hydrothermal synthesis of corrensite: a study of transformation of the saponite to corrensite. Clays and Clay Minerals, 47, 212218.Google Scholar
Robinson, D., Schmidt, S.T. & De Zamora, A.S. (2002) Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. Journal of Metamorphic Geology, 20, 164174.Google Scholar
Rollion-Bard, C., Vigier, N. & Spezzaferri, S. (2007) In-situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera. Chemical Geology, 244, 679690.Google Scholar
Sasaki, M., Fujimoto, K., Sawaki, T., Tsukamoto, H., Kato, O., Komatsu, R., Doi, N. & Sasada, M. (2003) Petrographic features of a high-temperature granite just newly solidified magma at the Kakkonda geothermal field, Japan. Journal of Volcanology and Geothermal Research, 121, 257269.Google Scholar
Sautter, V., Fabre, C., Forni, O. et al. (2014) Igneous mineralogy at Bradbury rise: the first ChemCam campaign. Journal of Geophysical Research – Planets, 119, 3046.Google Scholar
Sautter, V., Toplis, M. & Wiens, R.C. et al. (2015) In situ evidence for continental crust on early Mars. Nature Geoscience, 8, 605609.Google Scholar
Shau, Y.H., Peacor, D.R. & Essene, E.J. (1990) Corrensite and chlorite/corrensite mixed layers in metabaslts from Northern Taiwan: TEM/AEM, EMPA, XRD and optical studies. Contributions to Mineralogy and Petrology, 112, 119133.Google Scholar
Schiffman, P. & Day, H.W. (1999) Petrological methods for the study of very low-grade metabasites. Pp. 108142 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Cambridge, UK.Google Scholar
Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.T., Batanova, V.G., Portnyagin, M.V., Garbe-Schönberg, D. & Krasheninnikov, S.P. (2016) Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature, 531, 628632.Google Scholar
Stolper, E.M., Baker, M.B. & Newcombe, M. et al. (2013) The petrochemistry of Jake Matejevic: a Martian mugearite. Science, 341, 1239463.Google Scholar
Upton, B.G.J. & Wadsworth, W.J. (1965) Geology of Reunion Island, Indian Ocean. Nature, 207, 151154.Google Scholar
Upton, B.G.J. & Wadsworth, W.J. (1967) A complex basalt-mugearite sill in Piton des Neiges volcano, Reunion. American Mineralogist, 52, 14751492.Google Scholar
Wilson, M.J. (2013) Sheet silicates – clay minerals. Pp. 438443 in: Rock-Forming Minerals, Vol. 3. The Geological Society, London, UK.Google Scholar