Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T01:20:46.018Z Has data issue: false hasContentIssue false

Some series involving the zeta function

Published online by Cambridge University Press:  17 April 2009

Junesang Choi
Affiliation:
Department of Mathematics, Dongguk University, Kyongju 780 714, Korea
H.M. Srivastava
Affiliation:
Department of Mathematics and Statistics, University of Victoria, Victoria BC V8W 3P4, Canada
J.R. Quine
Affiliation:
Department of Mathematics, Florida State University, Tallahassee FL 32304, United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lots of formulas for series of zeta function have been developed in many ways. We show how we can apply the theory of the double gamma function, which has recently been revived according to the study of determinants of Laplacians, to evaluate some series involving the Riemann zeta function.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Abramowitz, M. and Stegun, I.A., Handbook of mathematical functions (Dover Publications, Inc., 1965).Google Scholar
[2]Alexejewsky, W., ‘Ueber eine Classe von Functionen, die der Gammafunction analog sind’, Leipzig: Weidmanncshe Buchhandluns 46 (1894), 268275.Google Scholar
[3]Barnes, E.W., ‘The theory of G-function’, Quart. J. Math. 31 (1899), 264314.Google Scholar
[4]Barnes, E.W., ‘Genesis of the double gammafunction’, Proc. London Math. Soc. 31 (1900), 358381.Google Scholar
[5]Barnes, E.W., ‘The theory of the double Gamma function’, Philos. Trans. Roy. London Soc. Ser. A 196 (1901), 265388.Google Scholar
[6]Cassou-Nogués, P., Analogues p-adiques des fonctions Γ-multiples (Journées Arithmétiques de Marseille, 1978).Google Scholar
[7]Choi, Junesang, ‘Determinant of Laplacian on S3’, Math. Japon. 40 (1994), 155166.Google Scholar
[8]Gradshteyn, I.S. and Ryzhik, I.M., Tables of integrals, series and products, (Corrected and enlarged edition prepared by Jeffrey, A.) (Academic Press, 1980).Google Scholar
[9]Hölder, V.O., ‘Ueber eine transcendente function’, Gottingen Dieterichsche Verlags-Buchhandlung (1886), 514522.Google Scholar
[10]Ivić, A., The Riemann zeta-function (John Wiley and Sons, 1985).Google Scholar
[11]Johnson, W.W., ‘Note on the numerical transcendents Sn and sn = Sn – 1’, Bull. Amer. Math. Soc. 12 (19051906), 477482.Google Scholar
[12]Jordan, C., Calculus of finite differences (Chelsea Publishing Company, 1965).Google Scholar
[13]Kinkelin, , ‘Ueber eine mit der Gamma Function verwante Transcendente und deren Anwendung auf die Integralrechnung’, J. Reine Angew. Math. 57 (1860), 122158.Google Scholar
[14]Magnus, W., Oberhettinger, F. and Soni, R.P., Formulas and theorems for the special functions of mathematical physics (Springer-Verlag, Berlin, Heidelberg, New York, 1966).CrossRefGoogle Scholar
[15]Shallit, J.D. and Zikan, K., ‘A theorem of Goldbach’, Amer. Math. Monthly 93 (1986), 402403.CrossRefGoogle Scholar
[16]Shintani, T., ‘A proof of the classical Kronecker limit formula’, Tokyo J. Math. 3 (1980), 191199.CrossRefGoogle Scholar
[17]Srivastava, H.M., ‘A unified presentation of certain classes of series of the Riemann zeta function’, Riv. Mat. Univ. Parma 14 (1988), 123.Google Scholar
[18]Titchmarsh, E.C., The theory of the Riemann zeta function (Clarendon Press, Oxford, 1951).Google Scholar
[19]Vignéras, M.F., ‘L'Equation Fonctionnelle de la Fonction Zeta de Selberg du Groupe Modulaire PSL(2, Z)’, Soc. Math. France Asté 61 (1979), 235249.Google Scholar
[20]Whittaker, E.T. and Watson, G.N., A course of modern analysis (Cambridge University Press, 1963).Google Scholar