No CrossRef data available.
Article contents
AXIOMATISABILITY OF THE CLASS OF MONOLITHIC GROUPS IN A VARIETY OF NILPOTENT GROUPS
Part of:
Varieties
Special aspects of infinite or finite groups
Structure and classification of infinite or finite groups
Representation theory of groups
Foundations
Published online by Cambridge University Press: 16 January 2020
Abstract
The class of all monolithic (that is, subdirectly irreducible) groups belonging to a variety generated by a finite nilpotent group can be axiomatised by a finite set of elementary sentences.
Keywords
- Type
- Research Article
- Information
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
References
Baker, K. A. and Wang, J., ‘Definable principal subcongruences’, Algebra Universalis 47(2) (2002), 145–151.CrossRefGoogle Scholar
Birkhoff, G., ‘On the structure of abstract algebras’, Math. Proc. Cambridge Philos. Soc. 31(4) (1935), 433–454.CrossRefGoogle Scholar
Birkhoff, G., ‘Subdirect unions in universal algebra’, Bull. Amer. Math. Soc. 50 (1944), 764–768.CrossRefGoogle Scholar
Dummit, D. S. and Foote, R. M., Abstract Algebra, 3rd edn (John Wiley & Sons, Hoboken, NJ, 2004).Google Scholar
Freese, R. and McKenzie, R., Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Note Series, 125 (Cambridge University Press, Cambridge, 1987).Google Scholar
Lyndon, R. C., ‘Two notes on nilpotent groups’, Proc. Amer. Math. Soc. 3 (1952), 579–579.CrossRefGoogle Scholar
Neumann, H., Varieties of Groups, 1st edn, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, 37 (Springer, Berlin, 1967).10.1007/978-3-642-88599-0CrossRefGoogle Scholar
Oates, S. and Powell, M. B., ‘Identical relations in finite groups’, J. Algebra 1 (1964), 11–39.CrossRefGoogle Scholar