We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on the vanishing limit problem for the three-dimensional incompressible Phan-Thien–Tanner (PTT) system, which is commonly used to describe the dynamic properties of polymeric fluids. Our purpose is to show the relation of the PTT system to the well-known Oldroyd-B system (with or without damping mechanism). The suitable a priori estimates and global existence of strong solutions are established for the PTT system with small initial data. Taking advantage of uniform energy and decay estimates for the PTT system with respect to time $t$ and coefficients $a$ and $b$, then allows us to justify in particular the vanishing limit for all time. More precisely, we prove that the solution $(u,\,\tau )$ of PTT system with $0\leq b\leq Ca$ converges globally in time to some limit $(\widetilde {u},\,\widetilde {\tau })$ in a suitable Sobolev space when $a$ and $b$ go to zero simultaneously (or, only $b$ goes to zero). We may check that $(\widetilde {u},\,\widetilde {\tau })$ is indeed a global solution of the corresponding Oldroyd-B system. In addition, a rate of convergence involving explicit norm will be obtained. As a byproduct, similar results are also true for the local a priori estimates in large norm.
We investigate the global Cauchy problem for a two–phase flow model consisting of the pressureless Euler equations coupled with the isentropic compressible Navier–Stokes equations through a drag forcing term. This model was first derived by Choi–Kwon [J. Differential Equations, 261(1) (2016), pp. 654–711] by taking the hydrodynamic limit of the Vlasov/compressible Navier–Stokes equations. Under the assumption that the initial perturbation is sufficiently small, Choi–Kwon [J. Differential Equations, 261(1) (2016), pp. 654–711] established the global well–posedness and large time behaviour for the three dimensional periodic domain $\mathbb {T}^3$. However, up to now, the global well–posedness and large time behaviour for the three dimensional Cauchy problem still remain unsolved. In this paper, we resolve this problem by proving the global existence and optimal decay rates of classic solutions for the three dimensional Cauchy problem when the initial data is near its equilibrium. One of key observations here is that to overcome the difficulties arising from the absence of pressure in the Euler equations, we make full use of the drag forcing term and the dissipative structure of the Navier–Stokes equations to closure the energy estimates of the variables for the pressureless Euler equations.
This paper proves the energy equality for distributional solutions to fractional Navier-Stokes equations, which gives a new proof and covers the classical result of Galdi [Proc. Amer. Math. Soc. 147 (2019), 785–792].
In this contribution, we present a modelling and simulation framework for parametrised lithium-ion battery cells. We first derive a continuum model for a rather general intercalation battery cell on the basis of non-equilibrium thermodynamics. In order to efficiently evaluate the resulting parameterised non-linear system of partial differential equations, the reduced basis method is employed. The reduced basis method is a model order reduction technique on the basis of an incremental hierarchical approximate proper orthogonal decomposition approach and empirical operator interpolation. The modelling framework is particularly well suited to investigate and quantify degradation effects of battery cells. Several numerical experiments are given to demonstrate the scope and efficiency of the modelling framework.
We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial to find a compromise between a very detailed description of many possible physical phenomena and a necessary simplicity needed for a fast and robust computational approach. We present the model, a numerical approach, simulation for single tubes and also for realistic network settings. In addition, we optimise the power output with respect to the operational parameters.
For $N\geq 2$, a bounded smooth domain $\Omega$ in $\mathbb {R}^{N}$, and $g_0,\, V_0 \in L^{1}_{loc}(\Omega )$, we study the optimization of the first eigenvalue for the following weighted eigenvalue problem:
\[ -\Delta_p \phi + V |\phi|^{p-2}\phi = \lambda g |\phi|^{p-2}\phi \text{ in } \Omega, \quad \phi=0 \text{ on } \partial \Omega, \]
where $g$ and $V$ vary over the rearrangement classes of $g_0$ and $V_0$, respectively. We prove the existence of a minimizing pair $(\underline {g},\,\underline {V})$ and a maximizing pair $(\overline {g},\,\overline {V})$ for $g_0$ and $V_0$ lying in certain Lebesgue spaces. We obtain various qualitative properties such as polarization invariance, Steiner symmetry of the minimizers as well as the associated eigenfunctions for the case $p=2$. For annular domains, we prove that the minimizers and the corresponding eigenfunctions possess the foliated Schwarz symmetry.
The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through
$\overline {\partial }$
-derivatives. To extend the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE techniques.
In this study, we consider the viscous compressible Navier–Stokes–Poisson equations, which consist of the balance laws for electron density and moment, and a Poisson equation for the electrostatic potential. The limit of vanishing electron mass of this system with both well/ill-prepared initial data on the whole space is rigorously justified within the framework of local smooth solution. We first make use of the symmetric hyperbolic–parabolic structure of the compressible Navier–Stokes–Poisson equation to obtain uniform estimate in the short time, by which we show uniform existence of local classical solution to the compressible Navier–Stokes–Poisson equation in $\mathbb {R}^d(d\geq 1)$. Further, with uniform estimate of time derivatives, we show the zero-electron-mass limit of the solutions for the compressible Navier–Stokes–Poisson equation with well-prepared initial data in $\mathbb {R}^d(d\geq 1)$ by using Aubin's lemma. A detailed spectral analysis on the linearized system is done so that we are able to prove the zero-electron-mass limit of the solutions with ill-prepared initial data in $\mathbb {R}^d(d\geq 3)$, where the convergence occurs away from the time $t=0$. Finally, note that the dissipation mechanism for the linearized compressible Navier–Stokes–Poisson system is different from that of the compressible Euler equations in Grenier (Commun. Partial Diff. Eqns.21 (1996), 363–394); Grenier (Commun. Pure Appl. Math.50 (1997), 821–865); Ukai (J. Math. Kyoto Univ.26 (1986), 323–331), or that of the compressible Euler–Poisson equations in Ali and Chen (Nonlinearity24 (2011), 2745–2761), since its eigenvalues are somehow similar to that of heat equation, and the fundamental solution contains a part behaving like the heat kernel, thus a big difficulty is the singularity of the heat kernel at $t=0$.
This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological) solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely only on Strichartz or virial estimates and is therefore able to treat low-power nonlinearities (hence also nonlocalised solitons) and capture the global (in space and time) behaviour of solutions.
More specifically, we consider quadratic nonlinear Klein-Gordon equations with a regular and decaying potential in one space dimension. Additional assumptions are made so that the distorted Fourier transform of the solution vanishes at zero frequency. Assuming also that the associated Schrödinger operator has no negative eigenvalues, we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions.
These results have some direct applications to the asymptotic stability of (topological) solitons, as well as several other potential applications to a variety of related problems. For instance, we obtain full asymptotic stability of kinks with respect to odd perturbations for the double sine-Gordon problem (in an appropriate range of the deformation parameter). For the
$\phi ^4$
problem, we obtain asymptotic stability for small odd solutions, provided the nonlinearity is projected on the continuous spectrum. Our results also go beyond these examples since our framework allows for the presence of a fully coherent phenomenon (a space-time resonance) at the level of quadratic interactions, which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this and use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.
The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.
is considered along with no-flux boundary conditions for $u$ and with prescribed constant positive Dirichlet boundary data for $v$. It is shown that if $D\in C^{3}([0,\infty ))$ is such that $0< D(\xi ) \le {K_D} (\xi +1)^{-\alpha }$ for all $\xi >0$ with some ${K_D}>0$ and $\alpha >0$, then for all initial data from a considerably large set of radial functions on $\Omega$, the corresponding initial-boundary value problem admits a solution blowing up in finite time.
In this paper, we study global-in-time, weighted Strichartz estimates for the Dirac equation on warped product spaces in dimension
$n\geq 3$
. In particular, we prove estimates for the dynamics restricted to eigenspaces of the Dirac operator on the compact spin manifolds defining the ambient manifold under some explicit sufficient condition on the metric and estimates with loss of angular derivatives for general initial data in the setting of spherically symmetric and asymptotically flat manifolds.
In this paper, we show that the permeability of a porous material (Tartar (1980)) and that of a bubbly fluid (Lipton and Avellaneda. Proc. R. Soc. Edinburgh Sect. A: Math. 114 (1990), 71–79) are limiting cases of the complexified version of the two-fluid models posed in Lipton and Avellaneda (Proc. R. Soc. Edinburgh Sect. A: Math. 114 (1990), 71–79). We assume the viscosity of the inclusion fluid is $z\mu _1$ and the viscosity of the hosting fluid is $\mu _1\in \mathbb {R}^{+}$, $z\in \mathbb {C}$. The proof is carried out by the construction of solutions for large $|z|$ and small $|z|$ with an iteration process similar to the one used in Bruno and Leo (Arch. Ration. Mech. Anal. 121 (1993), 303–338) and Golden and Papanicolaou (Commun. Math. Phys. 90 (1983), 473–491) and the analytic continuation. Moreover, we also show that for a fixed microstructure, the permeabilities of these three cases share the same integral representation formula (3.17) with different values of contrast parameter $s:=1/(z-1)$, as long as $s$ is outside the interval $\left [-\frac {2E_2^{2}}{1+2E_2^{2}},-\frac {1}{1+2E_1^{2}}\right ]$, where the positive constants $E_1$ and $E_2$ are the extension constants that depend only on the geometry of the periodic pore space of the material.
We construct a new type of planar Euler flows with localized vorticity. Let
$\kappa _i\not =0$
,
$i=1,\ldots , m$
, be m arbitrarily fixed constants. For any given nondegenerate critical point
$\mathbf {x}_0=(x_{0,1},\ldots ,x_{0,m})$
of the Kirchhoff–Routh function defined on
$\Omega ^m$
corresponding to
$(\kappa _1,\ldots , \kappa _m)$
, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and concentrate on curves perturbed from small circles centered near
$x_{0,i}$
,
$i=1,\ldots ,m$
. The proof is accomplished via the implicit function theorem with suitable choice of function spaces.
The present article is devoted to the study of global solution and large time behaviour of solution for the isentropic compressible Euler system with source terms in $\mathbb {R}^d$, $d\geq 1$, which extends and improves the results obtained by Sideris et al. in ‘T.C. Sideris, B. Thomases, D.H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations 28 (2003) 795–816’. We first establish the existence and uniqueness of global smooth solution provided the initial datum is sufficiently small, which tells us that the damping terms can prevent the development of singularity in small amplitude. Next, under the additional smallness assumption, the large time behaviour of solution is investigated, we only obtain the algebra decay of solution besides the $L^2$-norm of $\nabla u$ is exponential decay.
This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain $\Omega = \mathbb {T}\times \mathbb {R}$ with $\mathbb {T}=[0,\,1]$ being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field $(1,\,0)$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in $H^{1}$ as $t\to \infty$. As a consequence, the solution converges to its horizontal average asymptotically.
Steady-state diffusion in long axisymmetric structures is considered. The goal is to assess one-dimensional approximations by comparing them with axisymmetric eigenfunction expansions. Two problems are considered in detail: a finite tube with one end that is partly absorbing and partly reflecting; and two finite coaxial tubes with different cross-sectional radii joined together abruptly. Both problems may be modelled using effective boundary conditions, containing a parameter known as the trapping rate. We show that trapping rates depend on the lengths of the finite tubes (and that they decay slowly as these lengths increase) and we show how trapping rates are related to blockage coefficients, which are well known in the context of potential flow along tubes of infinite length.
with positive parameters $D_u,D_w,D_z,\xi _u,\xi _w,\delta _z,\rho$, $\alpha _u,\alpha _w,\mu _u,\beta$. When posed under no-flux boundary conditions in a smoothly bounded domain $\Omega \subset {\mathbb {R}}^{2}$, and along with initial conditions involving suitably regular data, the global existence of classical solution to this system was asserted in Tao and Winkler (2020, J. Differ. Equ. 268, 4973–4997). Based on the suitable quasi-Lyapunov functional, it is shown that when the virus replication rate $\beta <1$, the global classical solution $(u,v,w,z)$ is uniformly bounded and exponentially stabilizes to the constant equilibrium $(1, 0, 0, 0)$ in the topology $(L^{\infty }(\Omega ))^{4}$ as $t\rightarrow \infty$.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.