Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T01:14:33.656Z Has data issue: false hasContentIssue false

3 - Modality and structuralism

Published online by Cambridge University Press:  24 November 2009

Charles Parsons
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Mathematical modality

In §§11–12 the use of modal notions appeared attractive as a way of formulating eliminative structuralist views of mathematical objects so as to deal with the vacuity problem that such views faced. Before I pursue that idea, I shall consider modal notions more directly in relation to mathematics. Although this provides necessary background for continuing the previous line of argument, it is also of interest in its own right and will be relevant also to other parts of the present work.

Modality is what is expressed primarily by the words ‘necessary’ and ‘possible’ and by the modal auxiliaries ‘can’ and ‘must’. These words have such a variety of uses, some of quite different character, that we could not hope to survey them in a brief compass (and probably to do so at all would be a major linguistic undertaking). However, two distinctions made between uses of modal words or between modalities are of general importance and important for our purposes: (a) that between epistemic and nonepistemic and (b) that between absolute and nonabsolute.

(a) In Naming and Necessity, Kripke stresses the difference between the epistemological notion of the a priori and the notions of necessity and possibility with which he is concerned, which he says belong to metaphysics (pp. 35–36). In this discussion, he does not emphasize the idea of epistemic modalities or epistemic uses of modal words, but of course such can be found.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Modality and structuralism
  • Charles Parsons, Harvard University, Massachusetts
  • Book: Mathematical Thought and its Objects
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498534.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Modality and structuralism
  • Charles Parsons, Harvard University, Massachusetts
  • Book: Mathematical Thought and its Objects
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498534.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Modality and structuralism
  • Charles Parsons, Harvard University, Massachusetts
  • Book: Mathematical Thought and its Objects
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498534.004
Available formats
×