Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T08:22:50.340Z Has data issue: false hasContentIssue false

1 - Towards fluid equations by approximate deconvolution models

Published online by Cambridge University Press:  05 November 2012

L.C. Berselli
Affiliation:
Dipartimento di Matematica Applicata “U. Dini”, Università di Pisa
James C. Robinson
Affiliation:
University of Warwick
José L. Rodrigo
Affiliation:
University of Warwick
Witold Sadowski
Affiliation:
Uniwersytet Warszawski, Poland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N.A. & Stolz, S. (2001) Deconvolution methods for subgrid-scale ap-proximation in large eddy simulation, in Geurts, B.J. (ed.) Modern Simulation Strategies for Turbulent FlowR.T. Edwards Publishing, Flourtown, PA., 21–44.
Beirão, da Veiga H. (1993) Perturbation theorems for linear hyperbolic mixed problems and applications to the compressible Euler equations. Comm. Pure Appl. Math. 46, no. 2, 221–259.Google Scholar
Bennis, A.C., Lewandowski, R., & Titi, E.S. (2009) Simulations of turbulent ocean flow using a deconvolution model (Simulations de l'écoulement turbulent marin avec un modèle de déconvolution). C. R. Acad. Sci. Paris, Ser. I 347, 445–450.Google Scholar
Berselli, L.C. & Lewandowski, R. (2011) Convergence of approximate deconvolution models models to the mean Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 29 171–198Google Scholar
Berselli, L.C., Iliescu, T., & Layton, W.J. (2006) Mathematics of Large Eddy Simulation of turbulent flows. Scientific Computation. Springer–Verlag, Berlin.
Cao, Y., Lunasin, E.M., & Titi, E.S. (2006) Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Comm. Math. Sci. 4, no. 4, 823–848.Google Scholar
Cheskidov, A., Holm, D.D., Olson, E.J., & Titi, E.S. (2005) On a Leray-α model of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, no. 2055, 629–649.
Dunca, A. & Epshteyn, Y. (2006) On the Stolz–Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal. 37, no. 6, 1890–1902.Google Scholar
Foias, C. (1997) What do the Navier–Stokes equations tell us about turbulence?Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. AMS., Providence, RI, 208, 151–180.
Foias, C., Manley, O., Rosa, R., & Temam, R. (2001) Navier–Stokes equations and turbulence. Encyclopedia of Mathematics and its Applications 83, Cambridge Univ. Press, Cambridge, England.
Foias, C., Holm, D.D., & Titi, E.S. (2001) The Navier–Stokes-alpha model of fluid turbulence. PhysicaD 152–153, 505–519.
Foias, C., Holm, D.D., & Titi, E.S. (2002) The three-dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dynam. Diff. Eqn. 14, no. 1, 1–35.Google Scholar
Frisch, U. (1995) Turbulence, the Legacy of A.N. Kolmogorov. Cambridge Univ. Press, Cambridge, England.
Geurts, B.J. (1997) Inverse modelling for Large-Eddy Simulation. Phys. Fluids 9, 3585–3587.Google Scholar
Geurts, B.J. (2003) Elements of Direct and Large Eddy Simulation. R.T. Edwards Publishing, Flourtown, PA.
Ilyin, A.A., Lunasin, E.M., & Titi, E.S. (2006) A modified-Leray-α subgrid scale model of turbulence. Nonlinearity 19, no. 4, 879–897.Google Scholar
Kazhikhov, A.V. (2006) Approximation of Weak Limits and Related Problems, SPDE in hydrodynamics: recent progress and prospects. Lecture Notes in Math., Springer-Verlag, Berlin, Vol. 1871, 75–100,
Kraichnan, R.H. (1967) Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423.Google Scholar
Layton, W.J. & Lewandowski, R. (2006a) On a well-posed turbulence model. Discrete Contin. Dyn. Syst. Ser.B 6, no. 1, 111–128.Google Scholar
Layton, W.J. & Lewandowski, R. (2006b) Residual stress of approximate deconvolution models of turbulence. J. Turbul. 7, Paper 46.Google Scholar
Layton, W.J. & Lewandowski, R. (2008) A high accuracy Leray-deconvolution model of turbulence and its limiting behaviour. Anal. Appl. (Singap.) 6, no. 1, 23–49.Google Scholar
Layton, W.J., Manica, C.C., Neda, M., & Rebholz, L.G. (2010) Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations. Comput. Methods Appl. Mech. Engrg. 199, no. 13–16, 916–931.Google Scholar
Layton, W.J. & Neda, M. (2007a) A similarity theory of approximate deconvolution models of turbulence. J. Math. Anal. Appl. 333, no. 1, 416–429.Google Scholar
Layton, W.J., & Neda, M. (2007b) Truncation of scales by time relaxation. J. Math. Anal. Appl. 325, no. 2, 788–807.Google Scholar
Layton, W.J. & Rebholz, L. (2012) Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis, Lecture Notes in Math., Vol. 2042, Springer, Berlin.
Layton, W.J. & Stanculescu, I. (2007) K-41 optimised approximate deconvolution models. Int. J. Comput. Sci. Math. 1, no. 2–4, 396–411.Google Scholar
Leray, J. (1934) Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63, no. 1, 193–248.Google Scholar
Lesieur, M., Métais, O., & Comte, P. (2005) Large-eddy simulations of turbulence. Cambridge University Press, New York.
Lewandowski, R. (2009) On a Continuous Deconvolution Equation for Turbulence Models, in Feireisl, E., Kaplický, P., & Málek, J. (eds.) Lecture Notes of Necas Center for Mathematical Modeling, MatfyzPress, Prague, Vol. 5, 69–102.
Majda, A. (1984) Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53, Springer-Verlag, New York.
Olson, E. & Titi, E.S. (2007) Viscosity versus vorticity stretching: global well-posedness for a family of Navier–Stokes-alpha-like models. Nonlinear Anal. 66, no. 11, 2427–2458.Google Scholar
Rebholz, L.G. (2007) Conservation laws of turbulence models. J. Math. Anal. Appl. 326, no. 1, 33–45.Google Scholar
Rebholz, L.G. (2008) A family of new, high order NS-α models arising from helicity correction in Leray turbulence models. J. Math. Anal. Appl. 342, no. 1, 246–254.Google Scholar
Rebholz, L.G. & Sussman, M.M. (2010) On the high accuracy NS-alpha-deconvolution turbulence model. Math. Models Methods Appl. Sci. 20, no. 4, 611–633.Google Scholar
Sagaut, P. (2001) Large eddy simulation for incompressible flows. Scientific Computation. Springer-Verlag, Berlin.
Schochet, S. & Tadmor, E. (1992) The regularized Chapman–Enskog expansion for scalar conservation laws. Arch. Rational Mech. Anal. 119, no. 2, 95–107.Google Scholar
Stanculescu, I. (2008) Existence theory of abstract approximate deconvolution models of turbulence. Ann. Univ. Ferrara Sez. VII Sci. Mat. 54, no. 1, 145–168.Google Scholar
Stanculescu, I. & Manica, C.C. (2010) Numerical analysis of Leray-Tikhonov deconvolution models of fluid motion. Comput. Math. Appl. 60, no. 5, 1440–1456.Google Scholar
Stolz, S. & Adams, N.A. (1999) An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, no. 7, 1699–1701.Google Scholar
Stolz, S., Adams, N.A., & Kleiser, L. (2001) An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, no. 4, 997–1015.Google Scholar
Tikhonov, A.N. & Arsenin, V.Y. (1977) Solutions of Ill-Posed Problem. Winston, New York.
van Cittert, P. (1931) Zum Einfluss der Spaltbreite auf die Intensität Verteilung in Spektrallinien II. Zeit. fur Physik 69, 298–308.Google Scholar
Wiener, N. (1949) Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT press, Boston.
Yosida, K. (1995) Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin. Reprint of the sixth (1980) edition.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×