Book contents
- Frontmatter
- Contents
- Preface
- About the editor
- List of contributors
- 1 Introduction
- 2 The art and science of large-scale disasters
- 3 Multiscale modeling for large-scale disaster applications
- 4 Addressing the root causes of large-scale disasters
- 5 Issues in disaster relief logistics
- 6 Large-scale disasters: perspectives on medical response
- 7 Augmentation of health care capacity in large-scale disasters
- 8 Energy, climate change, and how to avoid a manmade disaster
- 9 Seawater agriculture for energy, warming, food, land, and water
- 10 Natural and anthropogenic aerosol-related hazards affecting megacities
- 11 Tsunamis: manifestation and aftermath
- 12 Intermediate-scale dynamics of the upper troposphere and stratosphere
- 13 Coupled weather–chemistry modeling
- 14 Seasonal-to-decadal prediction using climate models: successes and challenges
- 15 Climate change and related disasters
- 16 Impact of climate change on precipitation
- 17 Weather-related disasters in arid lands
- 18 The first hundred years of numerical weather prediction
- 19 Fundamental issues in numerical weather prediction
- 20 Space measurements for disaster response: the International Charter
- 21 Weather satellite measurements: their use for prediction
- Epilogue
- Index
9 - Seawater agriculture for energy, warming, food, land, and water
Published online by Cambridge University Press: 20 October 2009
- Frontmatter
- Contents
- Preface
- About the editor
- List of contributors
- 1 Introduction
- 2 The art and science of large-scale disasters
- 3 Multiscale modeling for large-scale disaster applications
- 4 Addressing the root causes of large-scale disasters
- 5 Issues in disaster relief logistics
- 6 Large-scale disasters: perspectives on medical response
- 7 Augmentation of health care capacity in large-scale disasters
- 8 Energy, climate change, and how to avoid a manmade disaster
- 9 Seawater agriculture for energy, warming, food, land, and water
- 10 Natural and anthropogenic aerosol-related hazards affecting megacities
- 11 Tsunamis: manifestation and aftermath
- 12 Intermediate-scale dynamics of the upper troposphere and stratosphere
- 13 Coupled weather–chemistry modeling
- 14 Seasonal-to-decadal prediction using climate models: successes and challenges
- 15 Climate change and related disasters
- 16 Impact of climate change on precipitation
- 17 Weather-related disasters in arid lands
- 18 The first hundred years of numerical weather prediction
- 19 Fundamental issues in numerical weather prediction
- 20 Space measurements for disaster response: the International Charter
- 21 Weather satellite measurements: their use for prediction
- Epilogue
- Index
Summary
The combination of the incipient demise of cheap oil and increasing evidence of global warming due to anthropogenic fossil carbon release has reinvigorated the need for and efforts toward renewable energy sources, especially for transportation applications. Biomass/biodiesel appears to have many benefits compared to hydrogen, the only other major renewable transportation fuel candidate. Biomass production is currently limited by available arable land and fresh water. Halophyte plants and direct seawater/saline water irrigation proffer a wholly different biomass production mantra―using wastelands and very plentiful seawater. Such an approach addresses many to most of the major emerging societal problems, including land, water, food, global warming, and energy. For many reasons, including seawater agriculture, portions of the Sahara appear to be viable candidates for future biomass production. The apparent nonlinearity between vegetation cover and atmospheric conditions over North Africa necessitates serious coupled boundary layer meteorology and global circulation modeling to ensure that this form of terra forming is favorable and to avoid adverse unintended consequences.
Introduction
Beginning with the technological development of fire in the human hunter–gatherer period, biomass was, until the 1800s, the dominant energy source. The subsequent development and utilization of fossil fuels, including coal, oil, and natural gas, powered/enabled tremendous technological progress and major increases in societal population and wealth.
- Type
- Chapter
- Information
- Large-Scale DisastersPrediction, Control, and Mitigation, pp. 212 - 217Publisher: Cambridge University PressPrint publication year: 2008