Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T01:10:49.589Z Has data issue: false hasContentIssue false

9 - Applications of micro- and nanofibers

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

This chapter outlines several applications of electrospun and solution-blown nanofibers and their mats. In the case of filters and membranes (Section 9.1), industrial application has already begun, but a number of research questions are still open. Applications of nanofiber mats as fluffy electrodes beneficial for fuel cells and Li-ion batteries have recently attracted significant attention and are the focus of Section 9.2. Two recent approaches based on nanofibers were proposed in the field of cooling of high-heat flux microelectronics (Section 9.3) and nanofluidics (Section 9.4).

Filters and membranes

Filter materials are used for air, water and blood filtration, while membranes are used in separation processes, in particular, for bioseparation and pathogen removal for direct blood transfusion. Filters can remove particles, droplets, bacteria, viruses or even individual molecules from a carrier fluid flowing through them, or, in principle, possess advanced detection and response features that are practically absent in today’s products (see Chapter 10).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barenblatt, G. I., Entov, V. M., Ryzhik, V. M., 1990. Theory of Fluid Flows through Natural Rocks. Kluwer, Dordrecht.CrossRefGoogle Scholar
Bazilevsky, A. V., Yarin, A. L., Megaridis, C. M., 2008. Pressure-driven delivery through carbon tube bundles, Lab on a Chip 8, 152–160.CrossRefGoogle ScholarPubMed
Birkhoff, G., Macdougall, D. P., Pugh, E. M., Taylor, G. I., 1948. Explosives in lined cavities. J. Appl. Phys. 19, 563–582.CrossRefGoogle Scholar
Cavaliere, S., Subianto, S., Savych, I., Jones, D. J., Rozi, J., 2011. Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4, 4761–4785.CrossRefGoogle Scholar
Chen, S., Hou, H., Harnisch, F., Patil, S., Carmona-Martinez, A. A., Agarwal, S., Zhang, Y., Sinha-Ray, S., Yarin, A. L., Schroder, U., Greiner, A., 2011. Electrospun and solution blown carbon nanofiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ. Sci. 4, 1417–1421.CrossRefGoogle Scholar
Child, J., 2009. FPGA boards and systems boost UAV payload compute density. COTS J. 2, 1–4.Google Scholar
Dimesso, L., Spanheimer, C., Jaegermann, W., Zhang, Y., Yarin, A. L., 2012. LiFePO4–3 D carbon nanofiber composites as cathode materials for Li-ions batteries. J. Appl. Phys. 111, 064307.CrossRefGoogle Scholar
Dimesso, L., Spanheimer, C., Jaegermann, W., Zhang, Y., Yarin, A. L., 2013. LiCoPO4–3 D carbon nanofiber composites as possible cathode materials for high voltage applications. Electrochim. Acta 95, 38–42.CrossRefGoogle Scholar
Filatov, Y., Budyka, A., Kirichenko, V., 2007. Electrospinning of Micro- and Nanofibers. Fundamentals and Applications in Separation and Filtration Processes. Begell House, New York.Google Scholar
Jun, S., Sinha-Ray, S., Yarin, A. L., 2013. Pool boiling on nano-textured surfaces. Int. J. Heat Mass Transf. 62, 99–111.CrossRefGoogle Scholar
Kim, J., Jasper, W. J., Hinestroza, J. P., 2006. Charge characterization of an electrically charged fiber via electrostatic force microscopy. J. Eng Fibers Fabrics 1, 30–46.Google Scholar
Kinney, D., 2009. UAVs embrace the benefits of direct spray cooling. COTS J. 2, 7–10.Google Scholar
Kumar, B., Asadi, M., Pisasale, D., Sinha-Ray, S., Rosen, B., Haasch, R., Abiade, J., Yarin, A. L., Salehi-Khojin, A., 2013. Renewable, metal-free and non-precious carbon nanofiber catalysts for CO2 reduction. Nat. Commun. 4: 2819/; Dec 2.
Lembach, A., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C., Yarin, A. L., 2010. Drop impact, spreading, splashing and penetration in electrospun nanofiber mats. Langmuir 26, 9516–9523.CrossRefGoogle ScholarPubMed
Levich, V. G., 1962. Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Maze, B., Wang, Q., Tafreshi, H. V., Pourdeyhimi, B., 2007. A simulation of unsteady state filtration via nanofiber media at reduced pressures. J. Aerosol Sci. 38, 550–571.CrossRefGoogle Scholar
Mudawar, I., 2001. Assessment of high-heat-flux thermal management schemes. IEEE Trans. Comp. Pack. Tech. 24, 122–141.CrossRefGoogle Scholar
Rioboo, R., Tropea, C., Marengo, M., 2001. Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155–165.CrossRefGoogle Scholar
Sinha-Ray, S., Chando, P., Yarin, A. L., 2009. Enhanced release of liquid from carbon nanotubes due to entrainment by air layer. Nanotechnology 20, 095711.CrossRefGoogle ScholarPubMed
Sinha-Ray, S., Sinha-Ray, S., Yarin, A. L., Weickgenannt, C. M., Emmert, J., Tropea, C., 2014. Drop impact cooling enhancement on nano-textured surfaces. Part II: Results of the parabolic flight experiments [zero gravity (0 g) and supergravity (1.8 g)]. Int. J. Heat Mass Transf. 70, 1107–1114.CrossRefGoogle Scholar
Sinha-Ray, S., Yarin, A. L., 2010. Flow from macroscopically long straight carbon nanopores for generation of thermo-responsive nanoparticles. J. Appl. Phys. 107, 024903.CrossRefGoogle Scholar
Sinha-Ray, S., Yarin, A. L., 2014. Drop impact cooling enhancement on nano-textured surfaces. Part I: Theory and results of the ground (1g) experiments. Int. J. Heat Mass Transf. 70, 1095–1106.CrossRefGoogle Scholar
Sinha-Ray, S., Zhang, Y., Yarin, A. L., 2011. Thorny devil nano-textured fibers: The way to cooling rates of the order of 1 kW/cm2. Langmuir 27, 215–226.CrossRefGoogle Scholar
Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stephan, P., Tropea, C., Yarin, A. L., 2009b. Nanofiber coating of surfaces for intensification of spray or drop impact cooling. Int. J. Heat Mass Transf. 52, 5814–5826.CrossRefGoogle Scholar
Srikar, R., Yarin, A. L., Megaridis, C. M., 2009a. Fluidic delivery of homogeneous solutions through carbon tube bundles, Nanotechnology 20, 275706.CrossRefGoogle ScholarPubMed
Wang, J., Kim, S. C., Pui, D. Y. H., 2008. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. J. Aerosol Sci. 39, 323–334.CrossRefGoogle Scholar
Washburn, E. W., 1921. The dynamics of capillary flow. Phys. Rev. 17, 273–283.CrossRefGoogle Scholar
Weickgenannt, C. M., Zhang, Y., Lembach, A. N., Roisman, I. V., Gambaryan-Roisman, T., Yarin, A. L., Tropea, C., 2011a. Non-isothermal drop impact and evaporation on polymer nanofiber mats. Phys. Rev. E 83, 036305.CrossRefGoogle Scholar
Weickgenannt, C. M., Zhang, Y., Sinha-Ray, S., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C., Yarin, A. L., 2011b. The inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Phys. Rev. E 84, 036310.CrossRefGoogle ScholarPubMed
Yarin, A. L., 2006. Drop impact dynamics: splashing, spreading, receding, bouncing. . .. Annu. Rev. Fluid Mech. 38, 159–192.CrossRefGoogle Scholar
Yarin, A. L., Chase, G. G., Liu, W., Doiphode, S. V., Reneker, D. H., 2006. Liquid drop growth on a fiber. AIChE J. 52, 217–227.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×