Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-01T19:49:42.874Z Has data issue: false hasContentIssue false

5 - The Chaco Megafans, South America

from Part II - Regional Studies

Published online by Cambridge University Press:  30 April 2023

Justin Wilkinson
Affiliation:
Texas State University, Jacobs JETS Contract, NASA Johnson Space Center
Yanni Gunnell
Affiliation:
Université Lumière Lyon 2
Get access

Summary

The Chaco plain, covering > 800,000 km2 in Bolivia, Argentina, and Paraguay, comprises six megafans. These are fed mainly from Subandean basins that are among the highest sediment-yielding basins of the Andes: of the total supplied (~ 325 Mt·yr–1) ~ 68 % is trapped on the megafans – because all the rivers except one end on the megafans, reaching at most ~ 50 % of the distance of their late Pleistocene ancestors. As such, the Chaco plain is one of the largest active continental sedimentary sinks of the planet, and includes the longest known megafan. The rivers terminate in the largest area of seasonal wetlands in South America, a product of (i) extremely flat megafan surfaces, (ii) the mosaic of palaeolandforms and present fluvial and lacustrine patterns, and (iii) the hydrogeomorphological dynamics under the current Holocene humid climate. Calculations of specific power appear to explain the effectiveness of these rivers in transporting the current inputs of water and sediment. However, during part of the Late Pleistocene the hydrological and sedimentological regimes allowed the fan-forming rivers to deliver sediment to the regional Paraguay and Paraná trunk rivers and thence to the ocean. New morphometric data describe relationships between feeder-basin area and megafans area, slope and circularity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsler, M. L. and Prendes, H. H. (2000). Transporte de sedimentos y procesos fluviales asociados. El río Paraná en su tramo medio (pp. 233-306). Santa Fe, Argentina: Centro de Publicaciones, Universidad Nacional del Litoral.Google Scholar
Amsler, M. L. and Drago, E. C. (2009). A review of the suspended sediment budget at the confluence of the Paraná and Paraguay Rivers. Hydrological Processes: An International Journal, 23, 32303235.CrossRefGoogle Scholar
Barnes, J. and Heins, W. (2009). Plio-Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Research, 21, 91109.Google Scholar
Bowman, D. (2019). Principles of Alluvial Fan Morphology. Springer, Berlin.Google Scholar
Bull, W. B. (1964). Geomorphology of Segmented Alluvial Fans in Western Fresno County, California. US Government Printing Office.Google Scholar
Bull, W. B. (1968). Fan, Alluvial, Cone, . In Fairbridge, R.W, ed., Geomorphology, Encyclopedia of Earth Sciences Series. Springer, Berlin, 710.Google Scholar
Carlini, A. A. and Tonni, E. P. (2000). Mamíferos fósiles del Paraguay. Departamento Científico Paleontología Vertebratos Museo de La Plata.Google Scholar
Cochonneau, G., Sondag, F., Guyot, J. L., et al. (2006). The environmental observation and research project, ORE HYBAM, and the rivers of the Amazon basin. Climate Variability and Change – Hydrological Impacts, 308, 4450.Google Scholar
Coltorti, M., Della Fazia, J., Rios, F. P., and Tito, G. (2012). Nuagapua (Chaco, Bolivia): evidence for the latest occurrence of megafauna in association with human remains in South America. Journal of South American Earth Sciences, 33, 5667.Google Scholar
Contreras, S. A. and Zucol, A. F. (2019). Late Quaternary vegetation history based on phytolith records in the eastern Chaco (Argentina). Quaternary International, 505, 2133.Google Scholar
Cordini, I. R. (1947). Los ríos Pilcomayo en la región del Patiño. Anales I, Dirección de Minas y Geología (Buenos Aires), 82 pp.Google Scholar
Fabbian, T., Ferreyro, V., De Felippi, R., Bernal, W., and Sanches, M. (1979). Estudio Geomorfológico en la zona del Bañado de Copo. Area: Rio Salado, Provincia de Santiago del Estero. In, Consejo Federal de Inversiones-CFI.Google Scholar
Garreaud, R. (2000). Cold air incursions over subtropical South America: mean structure and dynamics. Monthly Weather Review, 128, 25442559.Google Scholar
Garreaud, R., Vuille, M., and Clement, A. C. (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 522.CrossRefGoogle Scholar
Giles, P. T. (2010). Investigating the use of alluvial fan volume to represent fan size in morphometric studies. Geomorphology, 121, 317328.Google Scholar
Ginzburg, R., Adámoli, J., Herrera, P., and Torrella, S. (2005). Los Humedales del Chaco: clasificación, inventario y mapeo a escala regional. Miscelánea, 14, 121138.Google Scholar
Guyot, J. L., Bourges, J., and Cortez, J. (1994). Sediment transport in the Rio Grande, an Andean river of the Bolivian Amazon drainage basin. IAHS Publications-Series of Proceedings and Reports–International Association of Hydrological Sciences, 224, 223232.Google Scholar
Guyot, J. L., Filizola, N., Quintanilla, J., and Cortez, J. (1996). Dissolved solids and suspended sediment yields in the Rio Madeira basin, from the Bolivian Andes to the Amazon. Erosion and Sediment Yield: Global and Regional Perspectives, 5563.Google Scholar
Guzmán, S. V. (2014). El esplorador J. Crevaux i el rio Pilcomayo. Conferencia de la Sociedad Geográfica Argentina, 83.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183Google Scholar
Hoffstetter, R. (1968). Ñuapua, un gisement de vertébrés pléistocènes dans le Chaco Bolivien. Bulletin du Museum National d’Histoire Naturelle (2 Série), 40, 823836.Google Scholar
Hoffstetter, R. (1978). Une faune de Mammifères pléistocènes au Paraguay. Comptes Rendus Sommaires des Sciences de la Societé Géologique de France, 1, 3233.Google Scholar
Horton, B. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Research, 13, 4363.Google Scholar
Iriondo, M. (1974). Los ríos desajustados de Formosa. Una hipótesis alternativa. Revista de la Asociación Geológica Argentina, 29, 136137.Google Scholar
Iriondo, M. (1990). Map of the South American plains-Its present state. Quaternary of South America and Antarctic Peninsula, 6, 297308.Google Scholar
Iriondo, M. (1993). Geomorphology and late quaternary of the Chaco (South America). Geomorphology, 7, 289303.Google Scholar
Iriondo, M. H. (1986). Dinámica fluvial y transporte de sedimentos en el arroyo Los Amores (Chaco-Santa Fe). Actas, Primera Reunión, Asociación Argentina de Sedimentología. La Plata : Asociación Argentina de Sedimentología, 1921.Google Scholar
Iriondo, M. H. and Orfeo, O. (2014). Esquema hidrosedimentario de la cuenca del río Pilcomayo. In, 14 Reunion, Asociación Argentina de Sedimentología. Puerto Madryn, Argentina: Asociación Argentina de Sedimentología, 140-141.Google Scholar
Kandus, P., Minotti, P., Fabricante, I., and Ramonell, C. (2017). Identificación y Delimitación de Regiones de Humedales de Argentina. In Benzaquen, L., Blanco, R. D. E., Bo, P., et al. eds., Regiones de Humedales de la Argentina. Universidad Nacional de San Martín y Universidad de Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, 3148.Google Scholar
Latrubesse, E. M. and Ramonell, C. G. (1994). A climatic model for southwestern Amazonia in last glacial times. Quaternary International, 21, 163169.Google Scholar
Latrubesse, E. M., Stevaux, J. C., and Sinha, R. (2005). Tropical rivers. Geomorphology, 70, 187206.Google Scholar
Latrubesse, E. M. and Brea, D. (2009). Floods in Argentina. Developments in Earth Surface Processes, 13, 333349.CrossRefGoogle Scholar
Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., et al. (2012). Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356, 7588.Google Scholar
Latrubesse, E. M. and Restrepo, J. D. (2014). Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216, 225233.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential “who’s who” in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Lehner, B., Verdin, K., and Jarvis, A. (2006). HydroSHEDS technical documentation, version 1.0. World Wildlife Fund US, Washington, DC, 127.Google Scholar
Marchetti, Z. (2017). Region Humedales del Chaco. In Benzaquen, L., Blanco, R. D. E., Bo, P., et al., eds., Regiones de Humedales de la Argentina. Universidad Nacional de San Martín y Universidad de Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, 5972.Google Scholar
Martín-Vide, J. P., Amarilla, M., and Zárate, F. J. (2014). Collapse of the Pilcomayo River. Geomorphology, 205, 155163.CrossRefGoogle Scholar
May, J.-H., Argollo, J., and Veit, H. (2008a). Holocene landscape evolution along the Andean piedmont, Bolivian Chaco. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 505520.Google Scholar
May, J.-H., Zech, R., and Veit, H. (2008b). Late Quaternary paleosol–sediment-sequences and landscape evolution along the Andean piedmont, Bolivian Chaco. Geomorphology, 98, 3454.CrossRefGoogle Scholar
May, J.-H. and Veit, H. (2009). Late Quaternary paleosols and their paleoenvironmental significance along the Andean piedmont, Eastern Bolivia. Catena, 78, 100116.CrossRefGoogle Scholar
Milana, J. P. and Ruzycki, L. (1999). Alluvial-fan slope as a function of sediment transport efficiency. Journal of Sedimentary Research, 69, 553562.Google Scholar
Minotti, P. (2017). Subregion Riachos y Esteros del Chaco Húmedo. In Benzaquen, L, Blanco, R.D.E., Bo, P., et al., eds., Regiones de Humedales de la Argentina. Universidad Nacional de San Martín y Universidad de Buenos Aires: Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, 149162.Google Scholar
Navarro, G., Molina, J. A., and de Molas, L. P. (2006). Classification of the forests of the northern Paraguayan Chaco. Phytocoenologia, 36, 473508.Google Scholar
Neiff, J. J. (1999). El régimen de pulsos en ríos y grandes humedales de Sudamérica. Tópicos Sobre Humedales Subtropicales y Templados de Sudamérica, 229, 99103.Google Scholar
Nogués-Paegle, J., Mechoso, C. R., Fu, R., et al. (2002). Progress in Pan American CLIVAR research: understanding the South American monsoon. Meteorologica, 27, 130.Google Scholar
Orfeo, O. (1986). Estudio sedimentológico de ambientes fluviales del Chaco Oriental. Rev. Ambiente Subtropical, 1, 6072.Google Scholar
Park, E. and Latrubesse, E. M. (2017). The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control. Remote Sensing of Environment, 198, 321332.Google Scholar
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422.Google Scholar
Peri, V. G., Rossello, E. A. (2010). Anomalías morfoestructurales del drenaje del río Salado sobre las Lomadas de Otumpa (Santiago del Estero y Chaco) detectadas por procesamiento digital. Revista de la Asociación Geológica Argentina, 66, 636648.Google Scholar
Placci, G. and Holz, S. (2004). Patrón de paisaje de bosques del Chaco Oriental. Ecología y Manejo de los Bosques de Argentina. Editorial de la Universidad Nacional de La Plata.Google Scholar
Schumm, S. A. (2007). River Variability and Complexity. Cambridge University Press, Cambridge, UK.Google Scholar
SSRH, S.d.R.H. (2004). Estadística Hidrológica de la República Argentina. Presidencia de la Nación, Rep. Argentina.Google Scholar
Tonni, E., and Scillato-Yané, G. (1997). Una nueva localidad con mamíferos pleistocenos en el Norte de la Argentina. Aspectos paleozoogeográficos. In VI Congresso da Associação Brasileira de Estudos do Quaternário e Reunião sobre o Quaternário da América do Sul, Curitiba, Brasil, Anais, 345348.Google Scholar
Vizy, E. K. and Cook, K. H. (2007). Relationship between Amazon and high Andes rainfall. Journal of Geophysical Research: Atmospheres, 112. doi.org/10.1029/2006JD007980Google Scholar
Vuille, M., Hardy, D. R., Braun, C., Keimig, F., and Bradley, R. S. (1998). Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap, Bolivia. Journal of Geophysical Research: Atmospheres, 103, 1119111204.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Zhou, J. and Lau, K. (1998). Does a monsoon climate exist over South America? Journal of Climate, 11, 10201040.Google Scholar
Zurita, A. E., Miño-Boilini, Á. R., Carlini, A. A., Iriondo, M., and Alcaraz, M. A. (2009). Paleontología del Chaco Oriental: Una nueva localidad con mamíferos fósiles pleistocenos en el río Bermejo (Formosa, Argentina). Revista Mexicana de Ciencias Geológicas, 26, 277288.Google Scholar
Zurita, A. E., Miño-Boilini, A., Francia, A., et al. (2014). Paleontología y cronología del Cuaternario de las provincias de Corrientes y Formosa, Argentina. Acta Geológica Lilloana, 26, 7586.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×