Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T08:06:01.261Z Has data issue: false hasContentIssue false

8 - Stable-Isotope Fractionations by Cosmochemical and Geochemical Processes

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Isotope fractionations and their causes in extraterrestrial materials, nucleosynthetic isotope anomalies

Type
Chapter
Information
Cosmochemistry , pp. 165 - 191
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Robert, F., Gautier, D., and Dubrulle, B. (2000) The solar system D/H ratio: Observations and theories. Space Science Reviews, 92, 201224. This paper reviews what is known about hydrogen isotopes and what they can tell us about the history of the solar system.Google Scholar
Sharp, Z. (2017) Principles of Stable Isotope Geochemistry, 2nd Edition. Open Textbooks. https://doi.org/10.25844/h9q1–0p82. A good recent textbook covering the basics of isotope fractionation and its application to geochemistry and cosmochemistry.Google Scholar
Ali, A., Jabeen, I., Nasir, S. J., and Banerjee, J. R. (2018) Oxygen isotope thermometry of DaG 476 and SaU 008 martian meteorites: Implications for their origin. Geosciences, 8, article 15.CrossRefGoogle Scholar
Barnes, J. J., McCubbin, F. M., Santos, A. R. et al. (2020) Multiple early-formed water reservoirs in the interior of Mars. Nature Geoscience, 13, 260264.CrossRefGoogle ScholarPubMed
Bindeman, I. (2008) Oxygen isotopes in mantle and crustal magmas revealed by single crystal analysis. Reviews in Mineralogy & Geochemistry, 69, 445478.CrossRefGoogle Scholar
Black, D. C., and Pepin, R. O. (1969) Tapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.CrossRefGoogle Scholar
Brigham, C. A., Papanastassiou, D. A., and Wasserburg, G. J. (1985) Mg isotopic heterogeneities in fine-grained Ca-Al-rich inclusions (abstract). Lunar & Planetary Science, XVI, 9394, Lunar & Planetary Institute, Houston.Google Scholar
Budde, G., Burkhardt, C., and Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer solar system material to Earth. Nature Astronomy, 3, 736741.CrossRefGoogle Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon, Nature Geoscience, 13, 270274.CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. III (2003) Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research, 108, E5, 5042.Google Scholar
Chacko, T., Cole, D. R., and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Stable Isotope Geochemistry, Reviews in Mineralogy, 43, pp. 181.Google Scholar
Chakraborty, S., Yanchulova, P., and Thiemens, M. H. (2013) Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation. Science, 342, 463466.CrossRefGoogle ScholarPubMed
Clayton, R. N. (2002) Self-shielding in the solar nebula. Nature, 415, 860861.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth & Planetary Science Letters, 67, 151166.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous chondrites. Science, 182, 485488.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Davis, A. M., and Richter, F. M. (2014) Condensation and evaporation of solar system materials. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, Elsevier, Oxford, pp. 335360.Google Scholar
Davis, A. M., Hashimoto, A., Clayton, R. N., and Mayeda, T. K. (1990) Isotope mass fractionation during evaporation of forsterite (Mg2SiO4). Nature, 347, 655658.Google Scholar
Davis, A. M., Richter, F. M., Mendybaev, R. A., et al. (2015) Isotopic mass fractionation laws for magnesium and their effects on 26Al-26Mg systematics in solar system materials. Geochimica et Cosmochimica Acta, 158, 245261.CrossRefGoogle Scholar
Eiler, J. M. (2007) “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth & Planetary Science Letters, 262, 309327.Google Scholar
Eiler, J. M., Valley, J. W., Graham, C. M., and Fournelle, J. (2002) Two populations of carbonate in ALH 84001: Geochemical evidence for discrimination and genesis. Geochimica et Cosmochimica Acta, 66, 12851303.Google Scholar
Farquhar, J., Bao, H., and Thiemens, M. (2000a) Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756759.Google Scholar
Farquhar, J., Savarino, J., Jackson, T. L., and Thiemens, M. H. (2000b) Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature, 404, 5052.CrossRefGoogle ScholarPubMed
Farquhar, J., Peters, M., Johnston, D. T., et al. (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449, 706709.CrossRefGoogle ScholarPubMed
Geiss, J., and Reeves, H. (1981) Deuterium in the solar system. Astronomy & Astrophysics, 93, 189199.Google Scholar
Guo, W., and Eiler, J. M (2007) Temperatures of aqueous alteration and evidence for methane generation on parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.Google Scholar
Halevy, I., Fischer, W. W., and Eiler, J. M. (2011) Carbonates in the martian meteorite Allan Hills 84001 formed at 18±4 ºC in a near-surface aqueous environment. Proceedings of the National Academy of Sciences USA, 108, 16,89516,899.CrossRefGoogle Scholar
Herbst, E. (2003) Isotopic fractionation by ion-molecule reactions. Space Science Reviews, 106, 293304.Google Scholar
Hoefs, J. (2009) Stable Isotope Geochemistry, 6th edition. Springer, Göttingen, Germany, 285 pp.Google Scholar
Hulston, J. R., and Thode, H. G. (1965) Variations in the 33S, 34S, and 36S contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research, 70, 34753484.CrossRefGoogle Scholar
Jilly-Rehak, C. E., Huss, G. R., Nagashima, K., and Schrader, D. L. (2018) Low-temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen-isotope analyses. Geochimica et Cosmochimica Acta, 222, 230252.Google Scholar
Jull, A. J. T., Eastoe, C. J., Xue, S., and Herzog, G. F. (1995) Isotopic composition of carbonates in the SNC meteorites and Allan Hills 84001 and Nakhla. Meteoritics, 30, 311318.CrossRefGoogle Scholar
Jungck, M. H. A., Shimamura, T., and Lugmair, G. W. (1984) Ca isotope variations in Allende. Geochimica et Cosmochimica Acta, 48, 26512658.Google Scholar
Kasting, J. F. (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus, 74, 472494.CrossRefGoogle ScholarPubMed
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous-carbonaceous meteorite dichotomy. Space Science Reviews, 216, #55.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Fintnor, K., and Pál-Molnár, E. (2019) Evidence for oxygen-isotope exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-rich interaction on the CV parent asteroid. Geochimica et Cosmochimica Acta, 246, 419435.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Science Reviews, 139, 399436.CrossRefGoogle Scholar
Lee, T., Papanastassioui, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system. Fossil or Fuel? Astrophysical Journal, 211, L107L110.CrossRefGoogle Scholar
Lee, T., Russel, W. A., and Wasserburg, G. J. (1979) Calcium isotopic anomalies and the lack of aluminum-26 in an unusual Allende inclusion. Astrophysical Journal, 228, L93L98.CrossRefGoogle Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analyses of martian meteorite QUE 94201. Geophysical Research Letters, 27, 20172020.Google Scholar
Leshin, L. A., McKeegan, K. D., Carpenter, P. K., and Harvey, R. P. (1998) Oxygen isotopic constraints on the genesis of carbonates from martian meteorite ALH 84001. Geochimica et Cosmochimica Acta, 62, 313.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., and Huss, G. R. (2009) Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochimica et. Cosmochimica Acta, 73, 50185050.CrossRefGoogle Scholar
Mathew, K. J., and Marti, K. (2001) Early evolution of martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical. Research, 106, E1, 14011422.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALHA84001. Science, 273, 924930.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.CrossRefGoogle ScholarPubMed
Niederer, F. R., Papanastassiou, D. A., and Wasserburg, G. J. (1985) Absolute isotopic abundances of Ti in meteorites. Geochimica et. Cosmochimica Acta, 49, 835851.Google Scholar
Niemeyer, S., and Lugmair, G. W. (1984) Titanium isotopic anomalies in meteorites. Geochimica et Cosmochimica Acta, 48, 14011416.CrossRefGoogle Scholar
Onuma, N., Clayton, R. N., and Mayeda, T. K. (1970) Oxygen isotope fractionation between minerals and an estimate of the temperature of formation. Science, 167, 536538.CrossRefGoogle Scholar
Pavlov, A. A., and Kasting, J. F. (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology, 2, 2741.Google Scholar
Rayleigh, J. W. S. (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philosophy Magazine, 42, 493.Google Scholar
Richter, F. M., Janney, P. E., Mendybaev, R. A., et al. (2007) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochimica et Cosmochimica Acta, 71, 55445564.Google Scholar
Richter, F. M., Watson, E. B., Mendybaev, R. A., et al. (2009) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73, 42504263.Google Scholar
Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. (1978) Ca isotope fractionation on Earth and other solar system materials. Geochimica et Cosmochimica Acta, 42, 10751090.Google Scholar
Sakamoto, N., Seto, U., Itoh, S., et al. (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science, 317, 231233.CrossRefGoogle ScholarPubMed
Sandford, S. A., Bernstein, M. P., and Dworkin, J. P. (2001) Assessment of the interstellar processes leading to deuterium enrichments in meteoritic organics. Meteoritics & Planetary Science, 36, 11171133.Google Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochimica et Cosmochimica Acta, 75, 308325.CrossRefGoogle Scholar
Stone, S. W., Yelle, R. V., Benna, M., et al. (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 824831.Google Scholar
Tachibana, S., and Huss, G. R. (2005) Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Thiemens, M. H. (2006) History and applications of mass-independent isotope effects. Annual Reviews of Earth and Planetary Sciences, 34, 217262.Google Scholar
Thiemens, M. H., and Heidenreich, J. E. III (1983) The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science, 219, 10731075.Google Scholar
Valley, J. W., Eiler, J. M., Graham, C. M., et al. (1997) Low-temperature carbonate concretions in the martian meteorite ALH 84001: Evidence from stable isotopes and mineralogy. Science, 275, 16331638.CrossRefGoogle Scholar
Valley, J. W., Peck, W. H., King, E. M., and Wilde, S. A. (2002) A cool early Earth. Geology, 30, 351354.Google Scholar
Warren, P. H. (2011) Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth & Planetary Science Letters, 311, 93100.Google Scholar
Wasserburg, G. J. (1987) Isotopic abundances: Inferences on solar system and planetary evolution. Earth & Planetary Science Letters, 86, 129173.CrossRefGoogle Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophysical Research Letters, 4, 299302.CrossRefGoogle Scholar
Zheng, Y.-F. (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55, 22992307.Google Scholar
Zheng, Y.-F. (2011) On the theoretical calculations of O isotope fractionation factors for carbonate-water systems. Geochemical Journal, 45, 341354.Google Scholar
Ali, A., Jabeen, I., Nasir, S. J., and Banerjee, J. R. (2018) Oxygen isotope thermometry of DaG 476 and SaU 008 martian meteorites: Implications for their origin. Geosciences, 8, article 15.CrossRefGoogle Scholar
Barnes, J. J., McCubbin, F. M., Santos, A. R. et al. (2020) Multiple early-formed water reservoirs in the interior of Mars. Nature Geoscience, 13, 260264.CrossRefGoogle ScholarPubMed
Bindeman, I. (2008) Oxygen isotopes in mantle and crustal magmas revealed by single crystal analysis. Reviews in Mineralogy & Geochemistry, 69, 445478.CrossRefGoogle Scholar
Black, D. C., and Pepin, R. O. (1969) Tapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.CrossRefGoogle Scholar
Brigham, C. A., Papanastassiou, D. A., and Wasserburg, G. J. (1985) Mg isotopic heterogeneities in fine-grained Ca-Al-rich inclusions (abstract). Lunar & Planetary Science, XVI, 9394, Lunar & Planetary Institute, Houston.Google Scholar
Budde, G., Burkhardt, C., and Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer solar system material to Earth. Nature Astronomy, 3, 736741.CrossRefGoogle Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon, Nature Geoscience, 13, 270274.CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. III (2003) Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research, 108, E5, 5042.Google Scholar
Chacko, T., Cole, D. R., and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Stable Isotope Geochemistry, Reviews in Mineralogy, 43, pp. 181.Google Scholar
Chakraborty, S., Yanchulova, P., and Thiemens, M. H. (2013) Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation. Science, 342, 463466.CrossRefGoogle ScholarPubMed
Clayton, R. N. (2002) Self-shielding in the solar nebula. Nature, 415, 860861.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth & Planetary Science Letters, 67, 151166.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous chondrites. Science, 182, 485488.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Davis, A. M., and Richter, F. M. (2014) Condensation and evaporation of solar system materials. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, Elsevier, Oxford, pp. 335360.Google Scholar
Davis, A. M., Hashimoto, A., Clayton, R. N., and Mayeda, T. K. (1990) Isotope mass fractionation during evaporation of forsterite (Mg2SiO4). Nature, 347, 655658.Google Scholar
Davis, A. M., Richter, F. M., Mendybaev, R. A., et al. (2015) Isotopic mass fractionation laws for magnesium and their effects on 26Al-26Mg systematics in solar system materials. Geochimica et Cosmochimica Acta, 158, 245261.CrossRefGoogle Scholar
Eiler, J. M. (2007) “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth & Planetary Science Letters, 262, 309327.Google Scholar
Eiler, J. M., Valley, J. W., Graham, C. M., and Fournelle, J. (2002) Two populations of carbonate in ALH 84001: Geochemical evidence for discrimination and genesis. Geochimica et Cosmochimica Acta, 66, 12851303.Google Scholar
Farquhar, J., Bao, H., and Thiemens, M. (2000a) Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756759.Google Scholar
Farquhar, J., Savarino, J., Jackson, T. L., and Thiemens, M. H. (2000b) Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature, 404, 5052.CrossRefGoogle ScholarPubMed
Farquhar, J., Peters, M., Johnston, D. T., et al. (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449, 706709.CrossRefGoogle ScholarPubMed
Geiss, J., and Reeves, H. (1981) Deuterium in the solar system. Astronomy & Astrophysics, 93, 189199.Google Scholar
Guo, W., and Eiler, J. M (2007) Temperatures of aqueous alteration and evidence for methane generation on parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.Google Scholar
Halevy, I., Fischer, W. W., and Eiler, J. M. (2011) Carbonates in the martian meteorite Allan Hills 84001 formed at 18±4 ºC in a near-surface aqueous environment. Proceedings of the National Academy of Sciences USA, 108, 16,89516,899.CrossRefGoogle Scholar
Herbst, E. (2003) Isotopic fractionation by ion-molecule reactions. Space Science Reviews, 106, 293304.Google Scholar
Hoefs, J. (2009) Stable Isotope Geochemistry, 6th edition. Springer, Göttingen, Germany, 285 pp.Google Scholar
Hulston, J. R., and Thode, H. G. (1965) Variations in the 33S, 34S, and 36S contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research, 70, 34753484.CrossRefGoogle Scholar
Jilly-Rehak, C. E., Huss, G. R., Nagashima, K., and Schrader, D. L. (2018) Low-temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen-isotope analyses. Geochimica et Cosmochimica Acta, 222, 230252.Google Scholar
Jull, A. J. T., Eastoe, C. J., Xue, S., and Herzog, G. F. (1995) Isotopic composition of carbonates in the SNC meteorites and Allan Hills 84001 and Nakhla. Meteoritics, 30, 311318.CrossRefGoogle Scholar
Jungck, M. H. A., Shimamura, T., and Lugmair, G. W. (1984) Ca isotope variations in Allende. Geochimica et Cosmochimica Acta, 48, 26512658.Google Scholar
Kasting, J. F. (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus, 74, 472494.CrossRefGoogle ScholarPubMed
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous-carbonaceous meteorite dichotomy. Space Science Reviews, 216, #55.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Fintnor, K., and Pál-Molnár, E. (2019) Evidence for oxygen-isotope exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-rich interaction on the CV parent asteroid. Geochimica et Cosmochimica Acta, 246, 419435.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Science Reviews, 139, 399436.CrossRefGoogle Scholar
Lee, T., Papanastassioui, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system. Fossil or Fuel? Astrophysical Journal, 211, L107L110.CrossRefGoogle Scholar
Lee, T., Russel, W. A., and Wasserburg, G. J. (1979) Calcium isotopic anomalies and the lack of aluminum-26 in an unusual Allende inclusion. Astrophysical Journal, 228, L93L98.CrossRefGoogle Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analyses of martian meteorite QUE 94201. Geophysical Research Letters, 27, 20172020.Google Scholar
Leshin, L. A., McKeegan, K. D., Carpenter, P. K., and Harvey, R. P. (1998) Oxygen isotopic constraints on the genesis of carbonates from martian meteorite ALH 84001. Geochimica et Cosmochimica Acta, 62, 313.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., and Huss, G. R. (2009) Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochimica et. Cosmochimica Acta, 73, 50185050.CrossRefGoogle Scholar
Mathew, K. J., and Marti, K. (2001) Early evolution of martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical. Research, 106, E1, 14011422.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALHA84001. Science, 273, 924930.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.CrossRefGoogle ScholarPubMed
Niederer, F. R., Papanastassiou, D. A., and Wasserburg, G. J. (1985) Absolute isotopic abundances of Ti in meteorites. Geochimica et. Cosmochimica Acta, 49, 835851.Google Scholar
Niemeyer, S., and Lugmair, G. W. (1984) Titanium isotopic anomalies in meteorites. Geochimica et Cosmochimica Acta, 48, 14011416.CrossRefGoogle Scholar
Onuma, N., Clayton, R. N., and Mayeda, T. K. (1970) Oxygen isotope fractionation between minerals and an estimate of the temperature of formation. Science, 167, 536538.CrossRefGoogle Scholar
Pavlov, A. A., and Kasting, J. F. (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology, 2, 2741.Google Scholar
Rayleigh, J. W. S. (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philosophy Magazine, 42, 493.Google Scholar
Richter, F. M., Janney, P. E., Mendybaev, R. A., et al. (2007) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochimica et Cosmochimica Acta, 71, 55445564.Google Scholar
Richter, F. M., Watson, E. B., Mendybaev, R. A., et al. (2009) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73, 42504263.Google Scholar
Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. (1978) Ca isotope fractionation on Earth and other solar system materials. Geochimica et Cosmochimica Acta, 42, 10751090.Google Scholar
Sakamoto, N., Seto, U., Itoh, S., et al. (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science, 317, 231233.CrossRefGoogle ScholarPubMed
Sandford, S. A., Bernstein, M. P., and Dworkin, J. P. (2001) Assessment of the interstellar processes leading to deuterium enrichments in meteoritic organics. Meteoritics & Planetary Science, 36, 11171133.Google Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochimica et Cosmochimica Acta, 75, 308325.CrossRefGoogle Scholar
Stone, S. W., Yelle, R. V., Benna, M., et al. (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 824831.Google Scholar
Tachibana, S., and Huss, G. R. (2005) Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Thiemens, M. H. (2006) History and applications of mass-independent isotope effects. Annual Reviews of Earth and Planetary Sciences, 34, 217262.Google Scholar
Thiemens, M. H., and Heidenreich, J. E. III (1983) The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science, 219, 10731075.Google Scholar
Valley, J. W., Eiler, J. M., Graham, C. M., et al. (1997) Low-temperature carbonate concretions in the martian meteorite ALH 84001: Evidence from stable isotopes and mineralogy. Science, 275, 16331638.CrossRefGoogle Scholar
Valley, J. W., Peck, W. H., King, E. M., and Wilde, S. A. (2002) A cool early Earth. Geology, 30, 351354.Google Scholar
Warren, P. H. (2011) Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth & Planetary Science Letters, 311, 93100.Google Scholar
Wasserburg, G. J. (1987) Isotopic abundances: Inferences on solar system and planetary evolution. Earth & Planetary Science Letters, 86, 129173.CrossRefGoogle Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophysical Research Letters, 4, 299302.CrossRefGoogle Scholar
Zheng, Y.-F. (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55, 22992307.Google Scholar
Zheng, Y.-F. (2011) On the theoretical calculations of O isotope fractionation factors for carbonate-water systems. Geochemical Journal, 45, 341354.Google Scholar

Other References

Ali, A., Jabeen, I., Nasir, S. J., and Banerjee, J. R. (2018) Oxygen isotope thermometry of DaG 476 and SaU 008 martian meteorites: Implications for their origin. Geosciences, 8, article 15.CrossRefGoogle Scholar
Barnes, J. J., McCubbin, F. M., Santos, A. R. et al. (2020) Multiple early-formed water reservoirs in the interior of Mars. Nature Geoscience, 13, 260264.CrossRefGoogle ScholarPubMed
Bindeman, I. (2008) Oxygen isotopes in mantle and crustal magmas revealed by single crystal analysis. Reviews in Mineralogy & Geochemistry, 69, 445478.CrossRefGoogle Scholar
Black, D. C., and Pepin, R. O. (1969) Tapped neon in meteorites II. Earth & Planetary Science Letters, 6, 395405.CrossRefGoogle Scholar
Brigham, C. A., Papanastassiou, D. A., and Wasserburg, G. J. (1985) Mg isotopic heterogeneities in fine-grained Ca-Al-rich inclusions (abstract). Lunar & Planetary Science, XVI, 9394, Lunar & Planetary Institute, Houston.Google Scholar
Budde, G., Burkhardt, C., and Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer solar system material to Earth. Nature Astronomy, 3, 736741.CrossRefGoogle Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon, Nature Geoscience, 13, 270274.CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. III (2003) Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research, 108, E5, 5042.Google Scholar
Chacko, T., Cole, D. R., and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Stable Isotope Geochemistry, Reviews in Mineralogy, 43, pp. 181.Google Scholar
Chakraborty, S., Yanchulova, P., and Thiemens, M. H. (2013) Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation. Science, 342, 463466.CrossRefGoogle ScholarPubMed
Clayton, R. N. (2002) Self-shielding in the solar nebula. Nature, 415, 860861.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth & Planetary Science Letters, 67, 151166.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous chondrites. Science, 182, 485488.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Davis, A. M., and Richter, F. M. (2014) Condensation and evaporation of solar system materials. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, Elsevier, Oxford, pp. 335360.Google Scholar
Davis, A. M., Hashimoto, A., Clayton, R. N., and Mayeda, T. K. (1990) Isotope mass fractionation during evaporation of forsterite (Mg2SiO4). Nature, 347, 655658.Google Scholar
Davis, A. M., Richter, F. M., Mendybaev, R. A., et al. (2015) Isotopic mass fractionation laws for magnesium and their effects on 26Al-26Mg systematics in solar system materials. Geochimica et Cosmochimica Acta, 158, 245261.CrossRefGoogle Scholar
Eiler, J. M. (2007) “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth & Planetary Science Letters, 262, 309327.Google Scholar
Eiler, J. M., Valley, J. W., Graham, C. M., and Fournelle, J. (2002) Two populations of carbonate in ALH 84001: Geochemical evidence for discrimination and genesis. Geochimica et Cosmochimica Acta, 66, 12851303.Google Scholar
Farquhar, J., Bao, H., and Thiemens, M. (2000a) Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756759.Google Scholar
Farquhar, J., Savarino, J., Jackson, T. L., and Thiemens, M. H. (2000b) Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature, 404, 5052.CrossRefGoogle ScholarPubMed
Farquhar, J., Peters, M., Johnston, D. T., et al. (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449, 706709.CrossRefGoogle ScholarPubMed
Geiss, J., and Reeves, H. (1981) Deuterium in the solar system. Astronomy & Astrophysics, 93, 189199.Google Scholar
Guo, W., and Eiler, J. M (2007) Temperatures of aqueous alteration and evidence for methane generation on parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.Google Scholar
Halevy, I., Fischer, W. W., and Eiler, J. M. (2011) Carbonates in the martian meteorite Allan Hills 84001 formed at 18±4 ºC in a near-surface aqueous environment. Proceedings of the National Academy of Sciences USA, 108, 16,89516,899.CrossRefGoogle Scholar
Herbst, E. (2003) Isotopic fractionation by ion-molecule reactions. Space Science Reviews, 106, 293304.Google Scholar
Hoefs, J. (2009) Stable Isotope Geochemistry, 6th edition. Springer, Göttingen, Germany, 285 pp.Google Scholar
Hulston, J. R., and Thode, H. G. (1965) Variations in the 33S, 34S, and 36S contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research, 70, 34753484.CrossRefGoogle Scholar
Jilly-Rehak, C. E., Huss, G. R., Nagashima, K., and Schrader, D. L. (2018) Low-temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen-isotope analyses. Geochimica et Cosmochimica Acta, 222, 230252.Google Scholar
Jull, A. J. T., Eastoe, C. J., Xue, S., and Herzog, G. F. (1995) Isotopic composition of carbonates in the SNC meteorites and Allan Hills 84001 and Nakhla. Meteoritics, 30, 311318.CrossRefGoogle Scholar
Jungck, M. H. A., Shimamura, T., and Lugmair, G. W. (1984) Ca isotope variations in Allende. Geochimica et Cosmochimica Acta, 48, 26512658.Google Scholar
Kasting, J. F. (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus, 74, 472494.CrossRefGoogle ScholarPubMed
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous-carbonaceous meteorite dichotomy. Space Science Reviews, 216, #55.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Fintnor, K., and Pál-Molnár, E. (2019) Evidence for oxygen-isotope exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-rich interaction on the CV parent asteroid. Geochimica et Cosmochimica Acta, 246, 419435.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Science Reviews, 139, 399436.CrossRefGoogle Scholar
Lee, T., Papanastassioui, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system. Fossil or Fuel? Astrophysical Journal, 211, L107L110.CrossRefGoogle Scholar
Lee, T., Russel, W. A., and Wasserburg, G. J. (1979) Calcium isotopic anomalies and the lack of aluminum-26 in an unusual Allende inclusion. Astrophysical Journal, 228, L93L98.CrossRefGoogle Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analyses of martian meteorite QUE 94201. Geophysical Research Letters, 27, 20172020.Google Scholar
Leshin, L. A., McKeegan, K. D., Carpenter, P. K., and Harvey, R. P. (1998) Oxygen isotopic constraints on the genesis of carbonates from martian meteorite ALH 84001. Geochimica et Cosmochimica Acta, 62, 313.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., and Huss, G. R. (2009) Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochimica et. Cosmochimica Acta, 73, 50185050.CrossRefGoogle Scholar
Mathew, K. J., and Marti, K. (2001) Early evolution of martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical. Research, 106, E1, 14011422.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALHA84001. Science, 273, 924930.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.CrossRefGoogle ScholarPubMed
Niederer, F. R., Papanastassiou, D. A., and Wasserburg, G. J. (1985) Absolute isotopic abundances of Ti in meteorites. Geochimica et. Cosmochimica Acta, 49, 835851.Google Scholar
Niemeyer, S., and Lugmair, G. W. (1984) Titanium isotopic anomalies in meteorites. Geochimica et Cosmochimica Acta, 48, 14011416.CrossRefGoogle Scholar
Onuma, N., Clayton, R. N., and Mayeda, T. K. (1970) Oxygen isotope fractionation between minerals and an estimate of the temperature of formation. Science, 167, 536538.CrossRefGoogle Scholar
Pavlov, A. A., and Kasting, J. F. (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology, 2, 2741.Google Scholar
Rayleigh, J. W. S. (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philosophy Magazine, 42, 493.Google Scholar
Richter, F. M., Janney, P. E., Mendybaev, R. A., et al. (2007) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochimica et Cosmochimica Acta, 71, 55445564.Google Scholar
Richter, F. M., Watson, E. B., Mendybaev, R. A., et al. (2009) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73, 42504263.Google Scholar
Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. (1978) Ca isotope fractionation on Earth and other solar system materials. Geochimica et Cosmochimica Acta, 42, 10751090.Google Scholar
Sakamoto, N., Seto, U., Itoh, S., et al. (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science, 317, 231233.CrossRefGoogle ScholarPubMed
Sandford, S. A., Bernstein, M. P., and Dworkin, J. P. (2001) Assessment of the interstellar processes leading to deuterium enrichments in meteoritic organics. Meteoritics & Planetary Science, 36, 11171133.Google Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochimica et Cosmochimica Acta, 75, 308325.CrossRefGoogle Scholar
Stone, S. W., Yelle, R. V., Benna, M., et al. (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 824831.Google Scholar
Tachibana, S., and Huss, G. R. (2005) Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Thiemens, M. H. (2006) History and applications of mass-independent isotope effects. Annual Reviews of Earth and Planetary Sciences, 34, 217262.Google Scholar
Thiemens, M. H., and Heidenreich, J. E. III (1983) The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science, 219, 10731075.Google Scholar
Valley, J. W., Eiler, J. M., Graham, C. M., et al. (1997) Low-temperature carbonate concretions in the martian meteorite ALH 84001: Evidence from stable isotopes and mineralogy. Science, 275, 16331638.CrossRefGoogle Scholar
Valley, J. W., Peck, W. H., King, E. M., and Wilde, S. A. (2002) A cool early Earth. Geology, 30, 351354.Google Scholar
Warren, P. H. (2011) Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth & Planetary Science Letters, 311, 93100.Google Scholar
Wasserburg, G. J. (1987) Isotopic abundances: Inferences on solar system and planetary evolution. Earth & Planetary Science Letters, 86, 129173.CrossRefGoogle Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophysical Research Letters, 4, 299302.CrossRefGoogle Scholar
Zheng, Y.-F. (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55, 22992307.Google Scholar
Zheng, Y.-F. (2011) On the theoretical calculations of O isotope fractionation factors for carbonate-water systems. Geochemical Journal, 45, 341354.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×