Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T08:21:55.773Z Has data issue: false hasContentIssue false

10 - Neurobiology of Substance Addictions

from Part III - Levels of Analysis and Etiology

Published online by Cambridge University Press:  13 July 2020

Steve Sussman
Affiliation:
University of Southern California
Get access

Summary

Earlier neurobiological models of substance addictions proposed that addiction is the product of an imbalance between two separate, but interacting, neural systems: (1) an impulsive and amygdala-striatum dependent system that promotes automatic and habitual behaviors, and (2) a “reflective” prefrontal cortex dependent system for decision-making, forecasting the future consequences of a behavior, and inhibitory control. These impulsive and reflective systems are analogous to Daniel Kahneman’s model of System I and System II thinking, or the Behavioral Activation System (BAS) and the Behavioral Inhibition System (BIS). Here, the reflective system controls the impulsive system through several distinct mechanisms that regulate impulses. However, this control is not absolute – hyperactivity within the impulsive system can override the reflective system. Most prior research has focused either on the impulsive system (especially the ventral striatum and its mesolimbic dopamine projections) as a mechanism promoting the motivation and drive to seek drugs, or on the reflective system (prefrontal cortex) as a mechanism for decision-making and impulse control. More recent evidence suggests that a largely overlooked structure, the insula, also plays a key role in maintaining addiction (craving). Hence, a triadic model of addiction incorporates these three systems that are associated with archetypal behaviors in addiction: craving, motivation to procure the drug, poor decision-making, lack of impulse control, and deficits in self-regulation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainslie, G. (1975). Specious reward: a behavioral theory of impulsiveness and impulse control. Psychological Bulletin, 82(4), 463496. http://doi.org/10.1037/h0076860Google Scholar
Amlung, M., Vedelago, L., Acker, J., Balodis, I. & MacKillop, J. (2017). Steep delay discounting and addictive behavior: a meta-analysis of continuous associations. Addiction, 112(1), 5162. https://doi.org/10.1111/add.13535CrossRefGoogle ScholarPubMed
Baca, C. T. & Grant, K. J. (2007). What heroin users tell us about overdose. Journal of Addictive Diseases, 26(4), 6368. http://doi.org/10.1300/J069v26n04_08CrossRefGoogle ScholarPubMed
Bachman, J. G., Johnston, L. D. & O’Malley, P. M. (1990). Explaining the recent decline in cocaine use among young adults: further evidence that perceived risks and disapproval lead to reduced drug use. Journal of Health and Social Behavior, 31(2), 173. http://doi.org/10.2307/2137171CrossRefGoogle ScholarPubMed
Baxter, M. G. & Murray, E. A. (2002). The amygdala and reward. Nature Reviews Neuroscience. https://doi.org/10.1038/nrn875CrossRefGoogle Scholar
Bayer, H. M. & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129141. http://doi.org/10.1016/J.NEURON.2005.05.020CrossRefGoogle ScholarPubMed
Bechara, A. (2004). The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55(1), 3040.CrossRefGoogle ScholarPubMed
Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8(11), 14581463. http://doi.org/10.1038/nn1584CrossRefGoogle ScholarPubMed
Bechara, A. & Naqvi, N. (2004). Listening to your heart: interoceptive awareness as a gateway to feeling. Nature Neuroscience, 7(2), 102103. http://doi.org/10.1038/nn0204-102CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R., et al. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 12931295. http://doi.org/10.1126/science.275.5304.1293CrossRefGoogle ScholarPubMed
Bechara, A., Dolan, S., Denburg, N., et al. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39(4), 376389. http://doi.org/10.1016/S0028-3932(00)00136-6CrossRefGoogle ScholarPubMed
Belin, D., Jonkman, S., Dickinson, A., Robbins, T. W. & Everitt, B. J. (2009). Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behavioural Brain Research, 199(1), 89102. http://doi.org/10.1016/J.BBR.2008.09.027Google Scholar
Berridge, K. C., Robinson, T. E. & Aldridge, J. W. (2009). Dissecting components of reward: “liking,” “wanting,” and learning. Current Opinion in Pharmacology, 9(1), 6573. http://doi.org/10.1016/J.COPH.2008.12.014Google Scholar
Bingel, U., Wanigasekera, V., Wiech, K., et al. (2011). The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Science Translational Medicine, 3(70), 70ra14. http://doi.org/10.1126/scitranslmed.3001244CrossRefGoogle ScholarPubMed
Bjork, J. M. & Grant, S. J. (2009). Does traumatic brain injury increase risk for substance abuse? Journal of Neurotrauma, 26(7), 10771082. http://doi.org/http://dx.doi.org/10.1089/neu.2008.0849Google Scholar
Bowden-Jones, H., McPhillips, M., Rogers, R., Hutton, S. & Joyce, E. (2005). Risk-taking on tests sensitive to ventromedial prefrontal cortex dysfunction predicts early relapse in alcohol dependency: a pilot study. The Journal of Neuropsychiatry and Clinical Neurosciences, 17(3), 417420. https://doi.org/10.1176/jnp.17.3.417Google Scholar
Brody, A. L., Mandelkern, M. A., Olmstead, R. E., et al. (2009). Ventral striatal dopamine release in response to smoking a regular vs a denicotinized cigarette. Neuropsychopharmacology, 34(2), 282289. http://doi.org/10.1038/npp.2008.87Google Scholar
Carlson, R. W., Kumar, N. N., Wong-Mckinstry, E., et al. (2012). Alcohol withdrawal syndrome. Critical Care Clinics, 28(4), 549585. http://doi.org/10.1016/J.CCC.2012.07.004CrossRefGoogle ScholarPubMed
Cicero, T. J., Ellis, M. S., Surratt, H. L. & Kurtz, S. P. (2014). The changing face of heroin use in the United States. JAMA Psychiatry, 71(7), 821. http://doi.org/10.1001/jamapsychiatry.2014.366Google Scholar
Clewett, D., Luo, S., Hsu, E., et al. (2014). Increased functional coupling between the left fronto-parietal network and anterior insula predicts steeper delay discounting in smokers. Human Brain Mapping. https://doi.org/10.1002/hbm.22436CrossRefGoogle Scholar
Compton, W. M. & Volkow, N. D. (2006). Abuse of prescription drugs and the risk of addiction. Drug and Alcohol Dependence, 83, S4S7. http://doi.org/10.1016/j.drugalcdep.2005.10.020Google Scholar
Corrigall, W. A., Coen, K. M. & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1–2), 278284. http://doi.org/10.1016/0006-8993(94)90401-4Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. http://doi.org/10.1038/nrn2555CrossRefGoogle Scholar
Craig, A. D. (2010). The sentient self. Brain Structure and Function, 214(5–6), 563577. http://doi.org/10.1007/s00429-010-0248-yCrossRefGoogle ScholarPubMed
Crews, F., He, J. & Hodge, C. (2007). Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacology Biochemistry and Behavior, 86(2), 189199. http://doi.org/10.1016/J.PBB.2006.12.001Google Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A. & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195. http://doi.org/10.1038/nn1176Google Scholar
Daniulaityte, R., Falck, R. & Carlson, R. G. (2012). “I’m not afraid of those ones just ‘cause they’ve been prescribed”: perceptions of risk among illicit users of pharmaceutical opioids. International Journal of Drug Policy, 23(5), 374384. http://doi.org/10.1016/j.drugpo.2012.01.012Google Scholar
de la Fuente-Fernández, R., Phillips, A. G., Zamburlini, M., et al. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research, 136(2), 359363. http://doi.org/10.1016/S0166-4328(02)00130-4CrossRefGoogle Scholar
Di Chiara, G., Bassareo, V., Fenu, S., et al. (2004). Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 47, 227241. http://doi.org/10.1016/J.NEUROPHARM.2004.06.032CrossRefGoogle ScholarPubMed
Droutman, V., Read, S. J. & Bechara, A. (2015). Revisiting the role of the insula in addiction. Trends in Cognitive Sciences, 19(7), 414420. http://doi.org/10.1016/J.TICS.2015.05.005Google Scholar
Everitt, B. J. & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 14811489. http://doi.org/10.1038/nn1579Google Scholar
Everitt, B. J., Belin, D., Economidou, D., et al. W. (2008). Review: neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 31253135. http://doi.org/10.1098/rstb.2008.0089CrossRefGoogle ScholarPubMed
Fein, G., Di Sclafani, V. & Meyerhoff, D. J. (2002). Prefrontal cortical volume reduction associated with frontal cortex function deficit in 6-week abstinent crack-cocaine dependent men. Drug and Alcohol Dependence, 68(1), 8793. http://doi.org/10.1016/S0376-8716(02)00110-2CrossRefGoogle ScholarPubMed
Fleckenstein, A. E., Metzger, R. R., Wilkins, D. G., Gibb, J. W. & Hanson, G. R. (1997). Rapid and reversible effects of methamphetamine on dopamine transporters. Journal of Pharmacology and Experimental Therapeutics, 282(2), 834838. Retrieved from http://jpet.aspetjournals.org/content/282/2/834.abstractGoogle Scholar
Franklin, T. R., Acton, P. D., Maldjian, J. A., et al. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51(2), 134142. http://doi.org/10.1016/S0006-3223(01)01269-0CrossRefGoogle ScholarPubMed
Fu, L. ping, Bi, G. Hua, Zou, Z. tong, et al. (2008). Impaired response inhibition function in abstinent heroin dependents: an fMRI study. Neuroscience Letters, 438(3), 322326. https://doi.org/10.1016/j.neulet.2008.04.033Google Scholar
Garavan, H. & Hester, R. (2007). The role of cognitive control in cocaine dependence. Neuropsychology Review. https://doi.org/10.1007/s11065-007-9034-xCrossRefGoogle Scholar
Gardner, E. L. (2002). Addictive potential of cannabinoids: the underlying neurobiology. Chemistry and Physics of Lipids, 121, 267290. http://doi.org/10.1016/S0009-3084(02)00162-7Google Scholar
Gasquoine, P. G. (2014). Contributions of the insula to cognition and emotion. Neuropsychology Review, 24(2),7787. http://doi.org/10.1007/s11065-014-9246-9CrossRefGoogle ScholarPubMed
Gessa, G., Melis, M., Muntoni, A. & Diana, M. (1998). Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. European Journal of Pharmacology, 341(1), 3944. http://doi.org/10.1016/S0014-2999(97)01442-8Google Scholar
Gessa, G. L., Muntoni, F., Collu, M., Vargiu, L. & Mereu, G. (1985). Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Research, 348(1), 201203. http://doi.org/10.1016/0006-8993(85)90381-6CrossRefGoogle ScholarPubMed
Goldman, D., Oroszi, G. & Ducci, F. (2005). The genetics of addictions: uncovering the genes. Nature Reviews Genetics, 6(7), 521532. http://doi.org/10.1038/nrg1635Google Scholar
Goldstein, R. Z. & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience. https://doi.org/10.1038/nrn3119Google Scholar
Gomes, T., Tadrous, M., Mamdani, M. M., Paterson, J. M. & Juurlink., D. N. (2018). The burden of opioid-related mortality in the United States. JAMA Network Open, 1(2), e180217. doi:10.1001/jamanetworkopen.2018.0217Google Scholar
Goudriaan, A. E., De Ruiter, M. B., Van Den Brink, W., Oosterlaan, J. & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addiction Biology, 15(4), 491503. https://doi.org/10.1111/j.1369-1600.2010.00242.xCrossRefGoogle ScholarPubMed
Graham, D. P. & Cardon, A. L. (2008). An update on substance use and treatment following traumatic brain injury. Annals of the New York Academy of Sciences, 1141, 148162. http://doi.org/10.1196/annals.1441.029Google Scholar
Grant, S., Contoreggi, C. & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia. https://doi.org/10.1016/S0028-3932(99)00158-XGoogle Scholar
Grau, L. E., Dasgupta, N., Harvey, A. P., et al. (2007). Illicit use of opioids: is OxyContin® a “gateway drug”? American Journal on Addictions, 16(3), 166173. http://doi.org/10.1080/10550490701375293Google Scholar
Gray, M. A. & Critchley, H. D. (2007). Interoceptive basis to craving. Neuron, 54(2), 183186. http://doi.org/10.1016/j.neuron.2007.03.024CrossRefGoogle ScholarPubMed
Harlow, K. C. (1990). Patterns of rates of mortality from narcotics and cocaine overdose in Texas, 1976–87. Public Health Reports (Washington, D.C. : 1974), 105(5), 455462. Retrieved from www.ncbi.nlm.nih.gov/pubmed/2120721Google Scholar
Hasin, D. S., Saha, T. D., Kerridge, B. T., et al. (2015). Prevalence of marijuana use disorders in the United States between 2001–2002 and 2012–2013. JAMA Psychiatry, 72(12), 1235. http://doi.org/10.1001/jamapsychiatry.2015.1858Google Scholar
Hassan, S. F., Wearne, T. A., Cornish, J. L. & Goodchild, A. K. (2016). Effects of acute and chronic systemic methamphetamine on respiratory, cardiovascular and metabolic function, and cardiorespiratory reflexes. The Journal of Physiology, 594(3), 763780. http://doi.org/10.1113/JP271257Google Scholar
Heinz, A., Siessmeier, T., Wrase, J., et al. Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161(10), 1783–1789. http://doi.org/10.1176/ajp.161.10.1783Google Scholar
Herz, A. (1997). Endogenous opioid systems and alcohol addiction. Psychopharmacology, 129(2), 99111. http://doi.org/10.1007/s002130050169Google Scholar
Hester, R. & Garavan, H. (2004). Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. Journal of Neuroscience, 24(49), 1101711022. https://doi.org/10.1523/JNEUROSCI.3321-04.2004CrossRefGoogle ScholarPubMed
Hill, J. C. & Toffolon, G. (1990). Effect of alcohol on sensory and sensorimotor visual functions. Journal of Studies on Alcohol, 51(2), 108113. http://doi.org/10.15288/jsa.1990.51.108Google Scholar
Hinson, J. M., Jameson, T. L. & Whitney, P. (2003). Impulsive decision making and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 298306. http://doi.org/10.1037/0278-7393.29.2.298Google Scholar
Huang, Z.-L., Qu, W.-M., Eguchi, N., et al. (2005). Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature Neuroscience, 8(7), 858859. http://doi.org/10.1038/nn1491Google Scholar
Ito, R., Dalley, J. W., Robbins, T. W. & Everitt, B. J. (2002). Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. The Journal of Neuroscience, 22(14), 6247 LP-6253. Retrieved from www.jneurosci.org/content/22/14/6247.abstractGoogle Scholar
Janes, A. C., Pizzagalli, D. A., Richardt, S., et al. (2010). Neural substrates of attentional bias for smoking-related Cues: an fMRI study. Neuropsychopharmacology. https://doi.org/10.1038/npp.2010.103CrossRefGoogle Scholar
Jarmolowicz, D. P. & Schneider, T. D. (2020). Behavioral economics and addictive disorders. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 1222.Google Scholar
Johnson, M. W., Bickel, W. K. & Kirshenbaum, A. P. (2004). Substitutes for tobacco smoking: A behavioral economic analysis of nicotine gum, denicotinized cigarettes, and nicotine-containing cigarettes. Drug and Alcohol Dependence, 74(3), 253264. http://doi.org/10.1016/j.drugalcdep.2003.12.012Google Scholar
Kaasinen, V., Aalto, S., Nagren, K. & Rinne, J. O. (2004). Expectation of caffeine induces dopaminergic responses in humans. European Journal of Neuroscience, 19(8), 23522356. http://doi.org/10.1111/j.1460-9568.2004.03310.xCrossRefGoogle ScholarPubMed
Kaufman, J. N., Ross, T. J., Stein, E. A. & Garavan, H. (2003). Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. Journal of Neuroscience, 23(21), 78397843. https://doi.org/10.1523/jneurosci.23-21-07839.2003Google Scholar
Khantzian, E. J. (1987). The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. In The Cocaine Crisis. Boston, MA: Springer US, pp. 6574. http://doi.org/10.1007/978-1-4613-1837-8_7Google Scholar
Kirby, K. N., Petry, N. M. & Bickel, W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology: General, 128(1), 7887. http://doi.org/10.1037/0096-3445.128.1.78CrossRefGoogle ScholarPubMed
Koneru, A., Satyanarayana, S. & Rizwan, S. (2009). Endogenous opioids: their physiological role and receptors. Global Journal of Pharmacology, 3(3), 149153. Retrieved from https://pdfs.semanticscholar.org/e83a/851842f363f7e7f561c5ca465df9578d6bbc.pdfGoogle Scholar
Koob, G. F. & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217238. http://doi.org/10.1038/npp.2009.110Google Scholar
Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6(9), 691702. http://doi.org/10.1038/nrn1747Google Scholar
Krishnan-Sarin, S., Reynolds, B., Duhig, A. M., et al. (2007). Behavioral impulsivity predicts treatment outcome in a smoking cessation program for adolescent smokers. Drug and Alcohol Dependence, 88(1), 7982. https://doi.org/10.1016/j.drugalcdep.2006.09.006CrossRefGoogle Scholar
Lin, S.-K., Pan, W. H. T. & Yeh, P.-H. (2007). Prefrontal dopamine efflux during exposure to drug-associated contextual cues in rats with prior repeated methamphetamine. Brain Research Bulletin, 71(4), 365371. http://doi.org/10.1016/J.BRAINRESBULL.2006.10.001CrossRefGoogle ScholarPubMed
Marinkovic, K., Halgren, E. & Maltzman, I. (2004). Effects of alcohol on verbal processing: An event-related potential study. Alcoholism: Clinical & Experimental Research, 28(3), 415423. http://doi.org/10.1097/01.ALC.0000117828.88597.80Google Scholar
Mechtcheriakov, S., Brenneis, C., Egger, K., et al. (2007). A widespread distinct pattern of cerebral atrophy in patients with alcohol addiction revealed by voxel-based morphometry. Journal of Neurology, Neurosurgery, and Psychiatry, 78(6), 610614. http://doi.org/10.1136/jnnp.2006.095869Google Scholar
Melis, M., Pistis, M., Perra, S., et al. (2004). Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. The Journal of Neuroscience:  The Official Journal of the Society for Neuroscience, 24(1), 5362. http://doi.org/10.1523/JNEUROSCI.4503-03.2004Google Scholar
Miech, R. A., Chilcoat, H. & Harder, V. S. (2005). The increase in the association of education and cocaine use over the 1980s and 1990s: Evidence for a “historical period” effect. Drug and Alcohol Dependence, 79(3), 311320. http://doi.org/10.1016/J.DRUGALCDEP.2005.01.022Google Scholar
Molina-Luna, K., Pekanovic, A., Röhrich, S., et al. (2009). Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS ONE, 4(9), e7082. http://doi.org/10.1371/journal.pone.0007082CrossRefGoogle ScholarPubMed
Monterosso, J. R., Ainslie, G., Xu, J., et al. (2007). Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Human Brain Mapping, 28(5), 383393. http://doi.org/10.1002/hbm.20281Google Scholar
Monterosso, J. R., Aron, A. R., Cordova, X., Xu, J. & London, E. D. (2005). Deficits in response inhibition associated with chronic methamphetamine abuse. Drug and Alcohol Dependence. https://doi.org/10.1016/j.drugalcdep.2005.02.002Google Scholar
Naqvi, N. H. & Bechara, A. (2005). The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes. Pharmacology Biochemistry and Behavior, 81(4), 821829. http://doi.org/10.1016/j.pbb.2005.06.005Google Scholar
Naqvi, N. H. & Bechara, A. (2009). The hidden island of addiction: the insula. Trends in Neurosciences, 32(1), 5667. http://doi.org/10.1016/j.tins.2008.09.009Google Scholar
Naqvi, N. H. & Bechara, A. (2010). The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function, 214(5–6), 435450. http://doi.org/10.1007/s00429-010-0268-7CrossRefGoogle ScholarPubMed
Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science (New York, N.Y.), 315(5811), 531534. http://doi.org/10.1126/science.1135926Google Scholar
Nash, J. F. & Yamamoto, B. K. (1992). Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3, 4-methylenedioxymethamphetamine. Brain Research, 581(2), 237243. http://doi.org/10.1016/0006-8993(92)90713-JCrossRefGoogle Scholar
Nestler, E. J. (2005). The neurobiology of cocaine addiction. Science & Practice Perspectives, 3(1), 410. Retrieved from www.ncbi.nlm.nih.gov/pubmed/18552739Google Scholar
Noël, X., Brevers, D. & Bechara, A. (2013). A triadic neurocognitive approach to addiction for clinical interventions. Frontiers in Psychiatry, 4, 179. http://doi.org/10.3389/fpsyt.2013.00179Google Scholar
Oswald, L. M., Wong, D. F., McCaul, M., et al. (2005). Relationships among ventral striatal dopamine release, cortisol secretion and subjective responses to amphetamine. Neuropsychopharmacology, 30(4), 821832. http://doi.org/10.1038/sj.npp.1300667Google Scholar
Paraskevaides, T., Morgan, C. J. A., Leitz, J. R., et al. (2010). Drinking and future thinking: acute effects of alcohol on prospective memory and future simulation. Psychopharmacology, 208(2), 301308. http://doi.org/10.1007/s00213-009-1731-0CrossRefGoogle ScholarPubMed
Pertwee, R. (2010). S.27.01 Pharmacological actions of cannabinoids. European Neuropsychopharmacology, 20, S205. http://doi.org/10.1016/S0924-977X(10)70232-7Google Scholar
Phillips, A. G. & Fibiger, H. C. (1979). Decreased resistance to extinction after haloperidol: implications for the role of dopamine in reinforcement. Pharmacology Biochemistry and Behavior, 10(5), 751760. http://doi.org/10.1016/0091-3057(79)90328-9Google Scholar
Pidoplichko, V. I., DeBiasi, M., Williams, J. T. & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390(6658), 401404. http://doi.org/10.1038/37120CrossRefGoogle ScholarPubMed
Pierce, R. C. & Kumaresan, V. (2006). The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neuroscience & Biobehavioral Reviews, 30(2), 215238. http://doi.org/10.1016/J.NEUBIOREV.2005.04.016CrossRefGoogle ScholarPubMed
Porkka-Heiskanen, T., Strecker, R., Thakkar, M., Bjorkum, A. & Greene, R. (1997). Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science, 276(5316), 12651268. http://doi.org/10.1126/science.276.5316.1265CrossRefGoogle ScholarPubMed
Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. (2002). Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8384–8. http://doi.org/10.1073/pnas.122149199Google Scholar
Robbins, T. W., Ersche, K. D. & Everitt, B. J. (2008). Drug addiction and the memory systems of the brain. Annals of the New York Academy of Sciences, 1141(1), 121. http://doi.org/10.1196/annals.1441.020Google Scholar
Robinson, J. (2002). Decades of Drug Use: The ’80s and ’90s. Retrieved January 10, 2018, from http://news.gallup.com/poll/6352/decades-drug-use-80s-90s.aspxGoogle Scholar
Robinson, S., Sandstrom, S. M., Denenberg, V. H. & Palmiter, R. D. (2005). Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behavioral Neuroscience, 119(1), 515. http://doi.org/10.1037/0735-7044.119.1.5CrossRefGoogle ScholarPubMed
Robinson, T. E. & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247291. http://doi.org/10.1016/0165-0173(93)90013-PGoogle Scholar
Robinson, T. E. & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103114. http://doi.org/10.1046/j.1360-0443.2001.9611038.xCrossRefGoogle ScholarPubMed
Roozendaal, B., McReynolds, J. R. & McGaugh, J. L. (2004). The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. The Journal of Neuroscience, 24(6), 1385 LP–1392. Retrieved from www.jneurosci.org/content/24/6/1385.abstractGoogle Scholar
Rossetti, Z. L., Hmaidan, Y. & Gessa, G. L. (1992). Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. European Journal of Pharmacology, 221(2–3), 227234. http://doi.org/10.1016/0014-2999(92)90706-AGoogle Scholar
Rudd, R. A., Aleshire, N., Zibbell, J. E. & Matthew Gladden, R. (2016). Increases in drug and opioid overdose deaths – United States, 2000–2014. American Journal of Transplantation, 16(4), 13231327. http://doi.org/10.1111/ajt.13776Google Scholar
Samanez-Larkin, G. R., Hollon, N. G., Carstensen, L. L. & Knutson, B. (2008). Individual differences in insular sensitivity during loss: anticipation predict avoidance learning: research report. Psychological Science, 19(4), 320323. http://doi.org/10.1111/j.1467-9280.2008.02087.xCrossRefGoogle ScholarPubMed
Schmidt, A., Borgwardt, S., Gerber, H., et al. (2014). Acute effects of heroin on negative emotional processing: relation of amygdala activity and stress-related responses. Biological Psychiatry, 76(4), 289296. http://doi.org/10.1016/j.biopsych.2013.10.019Google Scholar
Schoenbaum, G. & Shaham, Y. (2008). The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biological Psychiatry, 63(3), 256262. http://doi.org/10.1016/J.BIOPSYCH.2007.06.003CrossRefGoogle ScholarPubMed
Schoenbaum, G., Roesch, M. R. & Stalnaker, T. A. (2006). Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 29(2), 116124. http://doi.org/10.1016/j.tins.2005.12.006Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 127. http://doi.org/10.1152/jn.1998.80.1.1Google Scholar
Sell, L. A., Morris, J. S., Bearn, J., et al. (2000). Neural responses associated with cue evoked emotional states and heroin in opiate addicts. Drug and Alcohol Dependence, 60(2), 207216. http://doi.org/10.1016/S0376-8716(99)00158-1Google Scholar
Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27(18), 48264831. http://doi.org/10.1523/JNEUROSCI.0400-07.2007Google Scholar
Shen, M., Piser, T. M., Seybold, V. S., et al. (1996). Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 16(14), 43224334. Retrieved from www.ncbi.nlm.nih.gov/pubmed/8699243Google Scholar
Singer, T., Critchley, H. D. & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13(8), 334340. http://doi.org/10.1016/j.tics.2009.05.001Google Scholar
Solinas, M., Ferré, S., You, Z.-B., et al. (2002). Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. The Journal of Neuroscience, 22(15), 6321 LP–6324. Retrieved from www.jneurosci.org/content/22/15/6321.abstractGoogle Scholar
Spanagel, R., Herz, A. & Shippenberg, T. S. (1992). Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway (mirodialysis/nucleus accumbens/dopamine release and metabolism/opiate dependence). Pharmacology, 89, 20462050. Retrieved from www.pnas.org/content/89/6/2046.full.pdfGoogle Scholar
Spiller, M. W., Broz, D., Wejnert, C., Nerlander, L., Paz-Bailey, G., Centers for Disease Control and Prevention (CDC), & National HIV Behavioral Surveillance System Study Group. (2015). HIV infection and HIV-associated behaviors among persons who inject drugs – 20 cities, United States, 2012. Morbidity and Mortality Weekly Report, 64(10), 270275. Retrieved from www.ncbi.nlm.nih.gov/pubmed/25789742Google Scholar
Stacy, A. W. & Wiers, R. W. (2010). Implicit cognition and addiction: a tool for explaining paradoxical behavior. Annual Review of Clinical Psychology, 6(1), 551575. http://doi.org/10.1146/annurev.clinpsy.121208.131444Google Scholar
Stacy, A. W., Pike, J. & Lee, A. Y. (2020). Multiple memory systems, addiction, and health habits: new routes for translational science. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 152170.Google Scholar
Tanda, G., Pontieri, F. E. & Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science (New York, N.Y.), 276(5321), 2048–50. http://doi.org/10.1126/SCIENCE.276.5321.2048Google Scholar
The Heroin Hug | Absolute Advocacy. (n.d.). Retrieved January 10, 2020, from www.absoluteadvocacy.org/the-heroin-hug/Google Scholar
Thompson, P. M., Hayashi, K. M., Simon, S. L., et al. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. The Journal of Neuroscience, 24(26), 6028 LP-6036. Retrieved from www.jneurosci.org/content/24/26/6028.abstractGoogle Scholar
Turcotte, C., Blanchet, M.-R., Laviolette, M. & Flamand, N. (2016). Impact of cannabis, cannabinoids, and endocannabinoids in the lungs. Frontiers in Pharmacology, 7, 317. http://doi.org/10.3389/fphar.2016.00317Google Scholar
Turel, O. & Bechara, A. (2016). A triadic reflective-impulsive-interoceptive awareness model of general and impulsive information system use: behavioral tests of neuro-cognitive theory. Frontiers in Psychology, 7, 601. http://doi.org/10.3389/fpsyg.2016.00601Google Scholar
Vaccarro, A. G. & Potenza, M. N. (2020). Neurobiological foundations of behavioral addictions. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 136151.Google Scholar
Villafuerte, S., Heitzeg, M. M., Foley, S., et al. (2012). Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Molecular Psychiatry, 17(5), 511519. http://doi.org/10.1038/mp.2011.33CrossRefGoogle Scholar
Volkow, N. D. & Fowler, J. S. (2000). Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex, 10(3), 318325. http://doi.org/10.1093/cercor/10.3.318Google Scholar
Volkow, N. D., Chang, L., Wang, G.-J., et al. (2001). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. The Journal of Neuroscience, 21(23), 94149418. Retrieved from www.jneurosci.org/content/21/23/9414.abstractGoogle Scholar
Volkow, N. D., Fowler, J. S., Wang, G.-J. & Swanson, J. M. (2004). Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Molecular Psychiatry, 9(6), 557569. http://doi.org/10.1038/sj.mp.4001507Google Scholar
Volkow, N. D., Wang, G.-J., Fowler, J. S., et al. (1996). Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism: Clinical and Experimental Research, 20(9), 15941598. http://doi.org/10.1111/j.1530-0277.1996.tb05936.xGoogle Scholar
Volkow, N. D., Wang, G.-J., Telang, F., et al. (2008). Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. NeuroImage, 39(3), 12661273. http://doi.org/10.1016/J.NEUROIMAGE.2007.09.059Google Scholar
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59(6), 10371050. http://doi.org/10.1016/J.NEURON.2008.09.006Google Scholar
Wang, Y., Zhu, L., Zou, Q., et al. (2018). Frequency dependent hub role of the dorsal and ventral right anterior insula. NeuroImage, 165, 112117. https://doi.org/10.1016/j.neuroimage.2017.10.004Google Scholar
Warlow, S. M., et al. (2020). Sensitization of incentive salience and the transition to addiction. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 2337.Google Scholar
Watson, P., de Wit, S., Hommel, B. & Wiers, R. W. (2012). Motivational mechanisms and outcome expectancies underlying the approach bias toward addictive substances. Frontiers in Psychology, 3, 440. http://doi.org/10.3389/fpsyg.2012.00440Google Scholar
Westman, E. C., Behm, F. M. & Rose, J. E. (1995). Airway sensory replacement combined with nicotine replacement for smoking cessation: a randomized, placebo-controlled trial using a citric acid inhaler. Chest, 107(5), 13581364. http://doi.org/10.1378/CHEST.107.5.1358Google Scholar
Westman, E. C., Behm, F. M. & Rose, J. E. (1996). Dissociating the nicotine and airway sensory effects of smoking. Pharmacology Biochemistry and Behavior, 53(2), 309315. http://doi.org/10.1016/0091-3057(95)02027-6Google Scholar
What does it feel like to use cocaine? | Drug Policy Alliance. (n.d.). Retrieved January 9, 2020, from www.drugpolicy.org/drug-facts/cocaine/what-cocaine-feels-likeGoogle Scholar
Wise, R. A. (1996). Neurobiology of addiction. Current Opinion in Neurobiology, 6(2), 243251. http://doi.org/10.1016/S0959-4388(96)80079-1Google Scholar
Yuan, Y., Zhu, Z., Shi, J., et al. (2009). Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain and Cognition, 71(3), 223228. http://doi.org/10.1016/J.BANDC.2009.08.014Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×