Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T05:42:36.312Z Has data issue: false hasContentIssue false

6 - Oxidative stress and neuronal resilience – implications for the pathophysiology of bipolar disorder

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 61 - 69
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, D. S., Monteiro, H. P., Oliveira, J. A., et al. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin Chem. 1986;32:805–7.CrossRefGoogle ScholarPubMed
Andreazza, A. C., Cassini, C., Rosa, A. R., et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007a; 41:523–9.CrossRefGoogle ScholarPubMed
Andreazza, A. C., Frey, B. N., Erdtmann, B., et al. DNA damage in bipolar disorder. Psychiatry Res. 2007b;153: 2732.CrossRefGoogle ScholarPubMed
Andreazza, A. C., Kauer-Sant’anna, M., Frey, B. N., et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord. 2008a;111:135–44.Google ScholarPubMed
Andreazza, A. C., Kauer-Sant’anna, M., Frey, B. N., et al. Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci. 2008b; 33:516–24.Google Scholar
Andreazza, A. C., Kapczinski, F., Kauer-Sant’anna, M., et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci. 2009;34:263–71.Google ScholarPubMed
Andreazza, A. C., Shao, L., Wang, J. F., et al. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67:360–8.CrossRefGoogle ScholarPubMed
Andreazza, A. C., Wang, J. F., Salmasi, F., et al. Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem. 2013;127:552–61.CrossRefGoogle ScholarPubMed
Apel, K, Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.CrossRefGoogle ScholarPubMed
Arent, C. O., Réus, G. Z., Abelaira, H. M., et al. Synergist effects of n-acetylcysteine and deferoxamine treatment on behavioral and oxidative parameters induced by chronic mild stress in rats. Neurochem Int. 2012;61: 1072–80.CrossRefGoogle ScholarPubMed
Atkuri, K. R., Mantovani, J. J., Herzenberg, L. A. N-Acetylcysteine – a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007; 7:355–9.CrossRefGoogle ScholarPubMed
Berk, M., Copolov, D. L., Dean, O., et al. N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008;64:468–75.Google ScholarPubMed
Berk, M., Dean, O., Cotton, S. M., et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord. 2011;135:389–94.CrossRefGoogle ScholarPubMed
Bilici, M., Efe, H., Köroğlu, M. A., et al. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord. 2001;64:4351.CrossRefGoogle ScholarPubMed
Brown, N. C., Andreazza, A. C., Young, L. T. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res. 2014;218:61–8.CrossRefGoogle ScholarPubMed
Choi, K. H., Higgs, B. W., Wendland, J. R., et al. Gene expression and genetic variation data implicate PCLO in bipolar disorder. Biol Psychiatry. 2011;69:353–9.CrossRefGoogle ScholarPubMed
Chung, C. P., Schmidt, D., Stein, C. M., et al. Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res. 2013;206:213–16.CrossRefGoogle ScholarPubMed
Clay, H. B., Sillivan, S., Konradi, C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci. 2011;29: 311–24.CrossRefGoogle ScholarPubMed
Clayton, E. H., Hanstock, T. L., Hirneth, S. J., et al. Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty acid supplementation. Eur J Clin Nutr. 2009;63: 1037–40.CrossRefGoogle ScholarPubMed
Da-Rosa, D. D., Valvassori, S. S., Steckert, A. V., et al. Effects of lithium and valproate on oxidative stress and behavioral changes induced by administration of m-AMPH. Psychiatry Res. 2012;198:521–6.CrossRefGoogle ScholarPubMed
Dean, O. M., Van Den Buuse, M., Bush, A. I., et al. A role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice. Curr Med Chem. 2009;16:2965–76.CrossRefGoogle ScholarPubMed
De Sousa, R. T., Zarate, C. A., Zanetti, M. V., et al. Oxidative stress in early stage bipolar disorder and the association with response to lithium. J Psychiatr Res. 2014;50:3641.CrossRefGoogle ScholarPubMed
Dimopoulos, N., Piperi, C., Psarra, V., et al. Increased plasma levels of 8-iso-PGF2alpha and IL-6 in an elderly population with depression. Psychiatry Res. 2008;161:5966.CrossRefGoogle Scholar
Fields, A., Li, P. P., Kish, S. J. et al. Increased cyclic AMP-dependent protein kinase activity in postmortem brain from patients with bipolar affective disorder. J Neurochem. 1999;73:1704–10.CrossRefGoogle ScholarPubMed
Forlenza, M. J., Miller, G. E. Increased serum levels of 8-hydroxy-2’-deoxyguanosine in clinical depression. Psychosom Med. 2006;68:17.CrossRefGoogle ScholarPubMed
Frangou, S., Lewis, M., Mccrone, P. Efficacy of ethyl- eicosapentaenoic acid in bipolar depression: randomised double-blind placebo-controlled study. Br J Psychiatry. 2006;188:4650.CrossRefGoogle ScholarPubMed
Frey, B. N., Martins, M. R., Petronilho, F. C et al. Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord. 2006a;8:275–80.Google Scholar
Frey, B. N., Valvassori, S. S., Gomes, K. M., et al. Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res. 2006b;1097:224–9.Google ScholarPubMed
Frey, B. N., Valvassori, S. S., Réus, G. Z., et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006c;31:326–32.Google Scholar
Frey, B. N., Valvassori, S. S., Réus, G. Z., et al. Changes in antioxidant defense enzymes after d-amphetamine exposure: implications as an animal model of mania. Neurochem Res. 2006d;31:699703.CrossRefGoogle ScholarPubMed
Frey, B. N., Andreazza, A. C., Houenou, J., et al. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatry. 2013;47:321–32.CrossRefGoogle ScholarPubMed
Fullerton, J. M., Tiwari, Y., Agahi, G., et al. Assessing oxidative pathway genes as risk factors for bipolar disorder. Bipolar Disord. 2010;12:550–6.CrossRefGoogle ScholarPubMed
Gawryluk, J. W., Wang, J. F., Andreazza, A. C., et al. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14:123–30.Google ScholarPubMed
Gałecki, P., Szemraj, J., Bieńkiewicz, M., et al. Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep. 2009;61: 436–47.CrossRefGoogle ScholarPubMed
Gergerlioglu, H. S., Savas, H. A., Bulbul, F., et al. Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:697702.CrossRefGoogle ScholarPubMed
Gu, X., Sun, J., Li, S., et al. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging. 2013;34:1069–79.CrossRefGoogle ScholarPubMed
Haeberle, A., Greil, W., Russmann, S. et al. Mono- and combination drug therapies in hospitalized patients with bipolar depression. Data from the European drug surveillance program AMSP. BMC Psychiatry. 2012;12:153.CrossRefGoogle ScholarPubMed
Halliwell, B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.CrossRefGoogle ScholarPubMed
Halliwell, B., Gutteridge, J. M. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 1995;18:125–6.CrossRefGoogle ScholarPubMed
Herken, H., Gurel, A., Selek, S., et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res. 2007;38:247–52.CrossRefGoogle ScholarPubMed
Hoffer, A., Osmond, H., Smythies, J. Schizophrenia; a new approach. II. Result of a year’s research. J Ment Sci. 1954;100:2945.CrossRefGoogle ScholarPubMed
Hunsberger, J. G., Austin, D. R., Chen, G. et al. Cellular mechanisms underlying affective resiliency: the role of glucocorticoid receptor- and mitochondrially-mediated plasticity. Brain Res. 2009;1293:7684.CrossRefGoogle ScholarPubMed
Jorgensen, A., Krogh, J., Miskowiak, K., et al. Systemic oxidatively generated DNA/RNA damage in clinical depression: associations to symptom severity and response to electroconvulsive therapy. J Affect Disord. 2013;149:355–62.CrossRefGoogle ScholarPubMed
Jornada, L. K., Valvassori, S. S., Steckert, A. V., et al. Lithium and valproate modulate antioxidant enzymes and prevent ouabain-induced oxidative damage in an animal model of mania. J Psychiatr Res. 2011;45:162–8.CrossRefGoogle Scholar
Kapczinski, F., Frey, B. N., Andreazza, A. C., et al. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr. 2008;30:243–5.CrossRefGoogle ScholarPubMed
Khairova, R., Pawar, R., Salvadore, G., et al. Effects of lithium on oxidative stress parameters in healthy subjects. Mol Med Rep. 2012;5:680–2.Google ScholarPubMed
Khanzode, S. D., Dakhale, G. N., Khanzode, S. S., et al. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 2003;8:365–70.CrossRefGoogle ScholarPubMed
Kidd, P. M. Bipolar disorder and cell membrane dysfunction. Progress toward integrative management. Altern Med Rev. 2004;9:107–35.Google ScholarPubMed
Kim, H. J., Soh, Y., Jang, J. H., et al. Differential cell death induced by salsolinol with and without copper: possible role of reactive oxygen species. Mol Pharmacol. 2001;60:440–9.Google ScholarPubMed
Kim, H. K., Andreazza, A. C., Yeung, P. Y et al. Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. J Psychiatry Neurosci. 2014;39:276–85.CrossRefGoogle ScholarPubMed
Kodydková, J., Vávrová, L., Zeman, M., et al. Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem. 2009;42: 1368–74.CrossRefGoogle ScholarPubMed
Konradi, C., Eaton, M., Macdonald, M. L., et al. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61:300–8.CrossRefGoogle ScholarPubMed
Kotan, V. O., Sarandol, E., Kirhan, E., et al. Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1284–90.CrossRefGoogle ScholarPubMed
Kuloglu, M., Ustundag, B., Atmaca, M., et al. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct. 2002;20:171–5.CrossRefGoogle ScholarPubMed
Kunz, M., Gama, C. S., Andreazza, A. C., et al. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32: 1677–81.CrossRefGoogle ScholarPubMed
Lai, J. S., Zhao, C., Warsh, J. J. et al. Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol. 2006;539:1826.CrossRefGoogle ScholarPubMed
Lai, J., Moxey, A., Nowak, G., et al. The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord. 2012;136:e31–9.CrossRefGoogle ScholarPubMed
Linck, V. M., Costa-Campos, L., Pilz, L. K., et al. AMPA glutamate receptors mediate the antidepressant-like effects of N-acetylcysteine in the mouse tail suspension test. Behav Pharmacol. 2012;23:171–7.CrossRefGoogle ScholarPubMed
Lopresti, A. L., Maker, G. L., Hood, S. D. et al. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:102–11.CrossRefGoogle ScholarPubMed
Macêdo, D. S., De Lucena, D. F., Queiroz, A. I., et al. Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: relevance as an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:230–7.CrossRefGoogle ScholarPubMed
Machado-Vieira, R., Andreazza, A. C., Viale, C. I., et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett. 2007;421:33–6.CrossRefGoogle ScholarPubMed
Machado-Vieira, R., Manji, H. K., Zarate, C. A. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009;11(Suppl 2): 92109.CrossRefGoogle ScholarPubMed
Maes, M., D’haese, P. C., Scharpé, S., et al. Hypozincemia in depression. J Affect Disord. 1994;31:135–40.CrossRefGoogle ScholarPubMed
Maes, M., Mihaylova, I., Kubera, M., et al. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis / chronic fatigue syndrome. Neuro Endocrinol Lett. 2009;30:715–22.Google ScholarPubMed
Maes, M., Galecki, P., Chang, Y. S. et al. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:676–92.CrossRefGoogle Scholar
Magalhães, P. V., Jansen, K., Pinheiro, R. T., et al. Peripheral oxidative damage in early-stage mood disorders: a nested population-based case-control study. Int J Neuropsychopharmacol. 2012;15:1043–50.CrossRefGoogle Scholar
Milaneschi, Y., Cesari, M., Simonsick, E. M., et al. Lipid peroxidation and depressed mood in community- dwelling older men and women. PLoS One. 2013;8: e65406.CrossRefGoogle ScholarPubMed
Mustak, M. S., Hegde, M. L., Dinesh, A., et al. Evidence of altered DNA integrity in the brain regions of suicidal victims of bipolar depression. Indian J Psychiatry. 2010;52: 220–8.Google ScholarPubMed
Osher, Y., Bersudsky, Y., Belmaker, R. H. Omega-3 eicosapentaenoic acid in bipolar depression: report of a small open-label study. J Clin Psychiatry. 2005;66:726–9.CrossRefGoogle ScholarPubMed
Ozcan, M. E., Gulec, M., Ozerol, E., et al. Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol. 2004;19:8995.CrossRefGoogle ScholarPubMed
Pandya, C. D., Howell, K. R., Pillai, A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:214–23.CrossRefGoogle ScholarPubMed
Riegel, R. E., Valvassori, S. S., Elias, G., et al. Animal model of mania induced by ouabain: evidence of oxidative stress in submitochondrial particles of the rat brain. Neurochem Int. 2009;55:491–5.CrossRefGoogle ScholarPubMed
Rizzo, L. B., Costa, L. G., Mansur, R. B., et al. The theory of bipolar disorder as an illness of accelerated aging: implications for clinical care and research. Neurosci Biobehav Rev. 2014;42:157–69.CrossRefGoogle ScholarPubMed
Rybka, J., Kędziora-Kornatowska, K., Banaś-Leżańska, P., et al. Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radic Biol Med. 2013;63:187–94.CrossRefGoogle ScholarPubMed
Sarandol, A., Sarandol, E., Eker, S. S., et al. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol. 2007;22: 6773.CrossRefGoogle Scholar
Sarris, J., Mischoulon, D., Schweitzer, I. Adjunctive nutraceuticals with standard pharmacotherapies in bipolar disorder: a systematic review of clinical trials. Bipolar Disord. 2011;13:454–65.CrossRefGoogle ScholarPubMed
Scandalios, J. G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38: 9951014.CrossRefGoogle ScholarPubMed
Schäfer, M., Goodenough, S., Moosmann, B. et al. Inhibition of glycogen synthase kinase 3 beta is involved in the resistance to oxidative stress in neuronal HT22 cells. Brain Res. 2004;1005:84–9.CrossRefGoogle ScholarPubMed
Shao, L., Young, L. T., Wang, J. F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry. 2005;58: 879–84.CrossRefGoogle ScholarPubMed
Sies, H. Oxidative Stress: Oxidants and Antioxidants. London: Academic Press; 1991.Google Scholar
Smaga, I., Pomierny, B., Krzyżanowska, W., et al. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39:280–7.CrossRefGoogle ScholarPubMed
Soares, J. C., Dippold, C. S., Wells, K. F., et al. Increased platelet membrane phosphatidylinositol-4,5- bisphosphate in drug-free depressed bipolar patients. Neurosci Lett. 2001;299:150–2.CrossRefGoogle ScholarPubMed
Soeiro-De-Souza, M. G., Andreazza, A. C., Carvalho, A. F., et al. Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. Int J Neuropsychopharmacol. 2013;16:1505–12.CrossRefGoogle ScholarPubMed
Steckert, A. V., Valvassori, S. S., Mina, F et al. Protein kinase C and oxidative stress in an animal model of mania. Curr Neurovasc Res. 2012;9:4757.CrossRefGoogle Scholar
Stefanescu, C., Ciobica, A. The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disord. 2012;143:34–8.CrossRefGoogle ScholarPubMed
Stoll, A. L., Severus, W. E., Freeman, M. P., et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry. 1999;56:407–12.CrossRefGoogle ScholarPubMed
Sublette, M. E., Ellis, S. P., Geant, A. L., et al. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72:1577–84.CrossRefGoogle ScholarPubMed
Sun, X., Wang, J. F., Tseng, M. et al. Downregulation In components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci. 2006;31:189–96.Google ScholarPubMed
Szuster-Ciesielska, A., Słotwińska, M., Stachura, A., et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:686–94.CrossRefGoogle ScholarPubMed
Vawter, M. P., Freed, W. J., Kleinman, J. E. Neuropathology of bipolar disorder. Biol Psychiatry. 2000;48:486504.CrossRefGoogle ScholarPubMed
Wang, H. Y., Friedman, E. Enhanced protein kinase C activity and ranslocation in bipolar affective disorder brains. Biol Psychiatry. 1996;40:568–75.CrossRefGoogle Scholar
Wang, J. F., Azzam, J. E., Young, L. T. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience. 2003;116:485–9.CrossRefGoogle ScholarPubMed
Washizuka, S., Iwamoto, K., Kakiuchi, C., et al. Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Neurosci Res. 2009;63:199204.CrossRefGoogle ScholarPubMed
Yager, S., Forlenza, M. J., Miller, G. E. Depression and oxidative damage to lipids. Psychoneuroendocrinology. 2010;35:1356–62.CrossRefGoogle ScholarPubMed
Yatham, L. N., Kennedy, S. H., Parikh, S. V., et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord. 2013;15: 144.CrossRefGoogle Scholar
Zhang, X. Y., Yao, J. K. Oxidative stress and therapeutic implications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:197–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×