We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Injured bone tissues can be healed with bone grafts, but this procedure may cause intense pain to the patient. A slow and localized delivery of nonsteroidal anti-inflammatory drugs (NSAIDs) could help to reduce the pain without affecting bone regeneration. The objective of the present study was to use [Mg-Al]-layered double hydroxide (LDH) as a matrix for controlled release of sodium naproxen (NAP). This system could be applied in biomaterial formulations (such as bone grafts) to achieve a local delivery of naproxen. [Mg-Al]-LDH successfully incorporated up to 80% (w/w) of naproxen by the structural reconstruction route, with the [Mg-Al]-LDH interlayer space increasing by 0.55 nm, corresponding to the drug molecule size. The evaluation of the naproxen release kinetics showed that 40% of the drug was delivered over 48 h in aqueous medium (pH 7.4 ± 0.1), indicating the potential of [Mg-Al]-LDH/NAP for local release of naproxen at adequate concentrations. Kinetic modeling showed that the naproxen release process was closely related to the Higuchi model, which considers the drug release as a diffusional process based on Fick’s law. The chemical stability of NAP after the release tests was verified by 1H NMR. The [Mg-Al]-LDH/NAP also exhibited low cytotoxicity toward fibroblast cells (L929 cell line), without modifications in their morphology and adhesion capacity. These results describe a suitable approach for preparing efficient systems for local delivery of nonsteroidal anti-inflammatory drugs for biomedical applications.
The unfolded protein response has recently been implicated as a mechanism by which 1,10-phenanthroline-containing coordination compounds trigger cell death. We explored the interaction of two such compounds—one containing copper and one containing manganese—with endoplasmic reticulum (ER) stress. Pretreatment with anisomycin significantly enhanced the cytotoxic activity of both metal-based compounds in A2780, but only the copper-based compound in A549 cells. The effects of pretreatment with tunicamycin were dependent on the nature of the metal center in the compounds. In A2780 cells, the cytotoxic action of the copper compound was reduced by tunicamycin only at high concentration. In contrast, in A549 cells the efficacy of the manganese compound cells was reduced at all tested concentrations. Intriguingly, some impact of free 1,10-phenanthroline was also observed in A549 cells. These results are discussed in the context of the emerging evidence that the ER plays a role in the cytotoxic action of 1,10-phenanthroline-based compounds.
With the increase of crewed space missions and the rise of space microbiology, the research of microbes grown under microgravity environment has been attracting more attention. The research scope in space microbiology has been extended beyond pathogens directly related to spaceflight. Y. pestis, the causative agent of plague, is also of interest to researchers. After being cultivated for 40 consecutive passages in either simulated microgravity (SMG) or normal gravity (NG) conditions, the Y. pestis strain 201 cultures were analysed regarding their phenotypic features. By using crystal violet staining assays, increased biofilm amount was detected in Y. pestis grown under SMG condition. Besides that, the damage degrees of Hela cell caused by SMG-grown Y. pestis were found diminished in comparison to those under NG condition. Consistent with this observation, the death course was delayed in mice infected with SMG-grown Y. pestis, suggesting that microgravity condition can contribute the attenuated virulence. RNA-seq-based transcriptomics analysis showed that a total of 218 genes were differentially regulated, of which 91 upregulated and 127 downregulated. We found that dozens of virulence-associated genes were downregulated, which partially explained the reduced virulence of Y. pestis under SMG condition. Our study demonstrated that long-term exposure to SMG influences the pathogenesis and biofilm formation ability of Y. pestis, which provides a novel avenue to study the mechanism of physiology and virulence of this pathogen. Microgravity enhanced the ability of biofilm formation and reduced the virulence and cytotoxicity of Y. pestis. Many virulence-associated genes of Y. pestis were differentially regulated in response to the stimulated microgravity. However, there is no molecular evidence to explain the enhanced biofilm formation ability, which requires further research. Taken together, the phenotype changes of Y. pestis under SMG conditions can provide us a new research direction of its potential pathogenesis.
Alpha-lactalbumin (α-LA) and β-lactoglobulin (β-LG) are contained in bovine milk whey. Chemical and physical treatments are known to alter the conformation of these proteins and we have previously reported that α-LA denatured with trifluoroethanol (TFE) and isolated from sterilized market milk inhibited the growth of rat crypt IEC-6 cells. In the present study, we aimed to evaluate the effects of TFE-treated α-LA and β-LG on cell growth using cultured intestinal cells and on their safety using a suckling mouse model. First, we investigated the effect of the TFE-treated whey proteins on human colonic Caco-2 cells at various differentiation stages. In the undifferentiated stage, we assessed cell growth by a water-soluble tetrazolium-1 method. The native whey proteins enhanced cell proliferation, whereas the TFE-treated whey proteins strongly inhibited cell growth. We investigated cell barrier function in the post-differentiated stage by measuring transepithelial electrical resistance (TER). Not only native but also the TFE-treated whey proteins increased TER. Next, we evaluated whether the TFE-treated α-LA and β-LG have adverse effects on healthy suckling mice. No mice given by the TFE-treated samples showed any adverse symptoms. We also performed a safety test using a human rotavirus infected gastrointestinal disease suckling mice model. Even the TFE-treated whey proteins appeared to prevent the development of diarrheal symptoms without any adverse effects. Although we cannot know the effect of long-term ingestion of denatured whey proteins, these results suggest that they have no adverse effects on differentiated intestinal cells and digestive tract, at least in short-term ingestion.
This work is focused on determining whether two graphene derivatives: graphene oxide (GO) and reduced graphene oxide (RGO) can be used alone as a component of anticancer therapy. In this paper, we present the synthesis GO and RGO, their physicochemical characterization as well as an evaluation of their cytotoxic properties on cancer (HepG2 and MCF-7) and non-malignant (clone-9 and HMF) cells. We demonstrated that both tested graphene derivatives have a high affinity to cancer cells. We showed that cytotoxic properties of GO and RGO were different depending on the type of solvent in which they were prepared. Additionally, we observed that cytotoxic properties of GO and RGO were different depending on the origin of the cells (liver and breast) and the form of graphene material (GO and RGO). We showed that GO and RGO can be potential, selectively materials which in future can found application in anticancer therapy.
Trichomonas vaginalis (Tv) induces host cell damage through cysteine proteinases (CPs) modulated by iron. An immunoproteomic analysis showed that trichomoniasis patient sera recognize various CPs, also some of them are present in vaginal washes (VWs). Thus, the goal of this work was to determine whether TvCP2 is expressed during infection and to assess the effect of iron on TvCP2 expression, localization and contribution to in vitro cellular damage. Western-blotting (WB) assays using TvCP2r and vaginitis patient serum samples showed that 6/9 Tv (+) but none of the Tv (−) patient sera recognized TvCP2r. WB using an anti-TvCP2r antibody and VWs from the same patients showed that in all of the Tv (+) but none of the Tv (−) VWs, the anti-TvCP2r antibody detected a 27 kDa protein band that corresponded to the mature TvCP2, which was confirmed by mass spectrometry analysis. Iron decreased the amount of TvCP2 mRNA and the protein localized on the parasite surface and cytoplasmic vesicles concomitant with the cytotoxic effect of TvCP2 on HeLa cells. Parasites pretreated with the anti-TvCP2r antibody also showed reduced levels of cytotoxicity and apoptosis induction in HeLa cell monolayers. In conclusion, these results show that TvCP2 is expressed during trichomonal infection and plays an important role in the in vitro HeLa cell cytotoxic damage under iron-restricted conditions.
Superparamagnetic iron oxide nanoparticles are well known for biomedical applications. The particle size, morphology, surface area, and functionalization are the key parameters that affect their bioactivity properties. Inline to this, the superparamagnetic Fe3O4 nanoparticles were prepared via chemical coprecipitation method with an average particle size of 6 ± 3 nm. The particles were surface-functionalized with chitosan and in-house prepared reduced graphene oxide (rGO) to obtain chitosan-coated Fe3O4 nanoparticles (C-Fe3O4) and rGO-Fe3O4 nanocomposites (G-Fe3O4), respectively. Upon functionalization, the physicochemical properties of the materials were characterized thoroughly using X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer, Raman Spectroscopy, and thermal gravimetric analysis. Furthermore, they have subjected to cytotoxicity assay, agar two-fold broth dilution test, and disc diffusion assay experiments for the determination of cytotoxicity and antibacterial activities. The effect of surface functionalization on their bioactivity was investigated thoroughly. The surface functionalization with chitosan and rGO has enhanced the bioactivity of the Fe3O4 nanoparticles.
Recently, we introduced an epoxy group to mebendazole by a reaction with epichlorohydrin and obtained two isoforms, mebendazole C1 (M-C1) and mebendazole C2 (M-C2). The in vitro effects of mebendazole derivatives at different concentrations on Echinococcus multilocularis protoscoleces and metacestodes as well as cytotoxicity in rat hepatoma (RH) cells were examined. The results demonstrated that the solubility of the two derivatives was greatly improved compared to mebendazole. The mortality of protoscoleces in vitro reached to 70–80% after 7 days of exposure to mebendazole or M-C2, and M-C2 showed higher parasiticidal effects than mebendazole (P > 0.05). The parasiticidal effect of M-C1 was low, even at a concentration of 30 µm. The percentage of damaged metacestodes that were treated with mebendazole and M-C2 in vitro at different concentrations were similar, and M-C1 exhibited insignificant effects on metacestodes. Significant morphological changes on protoscoleces and metacestodes were observed after treatment with mebendazole and M-C2. In addition, the introduction of an epoxy group to mebendazole also reduced its cytotoxicity in RH cells. Our results demonstrate that the introduction of an epoxy group not only improved the solubility of mebendazole, but also increased its parasiticidal effects on E. multilocularis and reduced its cytotoxicity in RH cells.
Trichomonas vaginalis induces cellular damage to the host cells (cytotoxicity) through the proteolytic activity of multiple proteinases of the cysteine type (CPs). Some CPs are modulated by environmental factors such as iron, zinc, polyamines, etc. Thus, the goal of this study was to assess the effect of glucose on T. vaginalis cytotoxicity, proteolytic activity and the particular role of TvCP2 (TVAG_057000) during cellular damage. Cytotoxicity assays showed that glucose-restriction (GR) promotes the highest HeLa cell monolayers destruction (~95%) by trichomonads compared to those grown under high glucose (~44%) condition. Zymography and Western blot using different primary antibodies showed that GR increased the proteolytic activity, amount and secretion of certain CPs, including TvCP2. We further characterized the effect of glucose on TvCP2. TvCP2 increases in GR, localized in vesicles close to the plasma membrane and on the surface of T. vaginalis. Furthermore, pretreatment of GR-trichomonads with an anti-TvCP2r polyclonal antibody specifically reduced the levels of cytotoxicity and apoptosis induction to HeLa cells in a concentration-dependent manner. In conclusion, our data show that GR, as a nutritional stress condition, promotes trichomonal cytotoxicity to the host cells, increases trichomonad proteolytic activity and amount of CPs, such as TvCP2 involved in cellular damage.
Local chemotherapy with biocompatible drug-delivery systems prolongs survival in patients. Due to the biocompatibility and high loading capacity, bentonite nanoclay is a good candidate for the fabrication of drug-delivery vehicles. In this study, doxorubicin-bentonite nanoclay complex (DOX-Bent complex) was prepared for the first time as a sustained-release drug-delivery system for intratumoural chemotherapy of melanoma. An efficient loading of DOX on 1 mg of bentonite nanoclay as high as 994.45 ± 4.9 µg was obtained at a 30:1 DOX:bentonite nanoclay mass ratio. The DOX-Bent complex showed a low initial burst release of DOX in the first 24 h of release, followed by a sustained-release pattern for 21 days. The cumulative in vitro release of DOX from the DOX-Bent complex at pHs 6.5 and 7.4 revealed that the DOX-Bent complex can distinguish between tumour and normal tissues and express specific drug release at the tumour site. The results of cytotoxicity experiments indicated that the release pattern of DOX can supply sufficient DOX to inhibit growth of the melanoma cancer cell with an IC50 of 0.29 ± 0.07 µg/mL. It is thus suggested that the DOX-Bent complex be introduced as a drug-delivery system for effective local cancer therapy.
Shiga toxin-producing Escherichia coli (STEC) is a known food pathogen, which main reservoir is the intestine of ruminants. The abundance of different STEC lineages in nature reflect a heterogeneity that is characterised by the differential expression of certain genotypic characteristics, which in turn are influenced by the environmental conditions to which the microorganism is exposed. Bacterial homeostasis and stress response are under the control of the alarmone guanosine tetraphosphate (ppGpp), which intrinsic levels varies across the E. coli species. In the present study, 50 STEC isolates from healthy sheep were evaluated regarding their ppGpp content, cytotoxicity and other relevant genetic and phenotypic characteristics. We found that the level of ppGpp and cytotoxicity varied considerably among the examined strains. Isolates that harboured the stx2 gene were the least cytotoxic and presented the highest levels of ppGpp. All stx2 isolates belonged to phylogroup A, while strains that carried stx1 or both stx1 and stx2 genes pertained to phylogroup B1. All but two stx2 isolates belonged to the stx2b subtype. Strains that belonged to phylogroup B1 displayed on average low levels of ppGpp and high cytotoxicity. Overall, there was a negative correlation between cytotoxicity and ppGpp.
The synthesis and antiprotozoal activity of some simple dialkyl pyrazole-3,5-dicarboxylates (compounds 2–6) and their sodium salts (pyrazolates) (compounds 7–9) against Trypanosoma cruzi, Leishmania infantum and Leishmania braziliensis are reported. In most cases the studied compounds showed, especially against the clinically significant amastigote forms, in vitro activities higher than those of the reference drugs (benznidazole for T. cruzi and glucantime for Leishmania spp.); furthermore, the low non-specific cytotoxicities against Vero cells and macrophages shown by these compounds led to good selectivity indexes, which are 8–72 times higher for T. cruzi amastigotes and 15–113 times higher for Leishmania spp. amastigotes than those of the respective reference drugs. The high efficiency of diethyl ester 3 and its sodium salt 8 against the mentioned protozoa was confirmed by further in vitro assays on infection rates and by an additional in vivo study in a murine model of acute and chronic Chagas disease. The inhibitory capacity of compounds 3 and 8 on the essential iron superoxide dismutase of the aforementioned parasites may be related to the observed anti-trypanosomatid activity. The low acute toxicity of compounds 3 and 8 in mice is also reported in this article.
Resin composite materials that are used to restore tooth cervical lesions associated with gingival recessions can hamper healing after root coverage surgeries. This study evaluates the in vitro cytotoxic effect of five resin composites (two commercial and three experimental) on oral mesenchymal stem cells (MSCs) and the persistence of stemness properties in high passage MSCs. Sorption and solubility tests were made for all materials. MSCs were isolated from re-entry palatal and periodontal granulation tissues and were characterized and cultured on composite discs. Cytotoxicity of the materials was evaluated by the Alamar Blue viability test, by Paul Karl Horan (PKH) labeling, and by immunocytochemical staining for actin. Water and saliva sorption and solubility data revealed that two of the experimental materials behaved comparable with the marketed resin composites. The Alamar Blue viability test shows that both cell lines grew well on composite discs that seemed to induce no apparent toxic effects. No signs of disruption of cytoskeleton organization was seen. Experimental resin composites can be recommended for further investigation for obtaining approval for use. The standard minimal criteria were fulfilled for high passage MSCs. Palatal tissue regains its regenerative properties in terms of MSC presence in the re-entry area after 6 months of healing.
Coronatin-2, a 14.5 kDa protein, was isolated from culture filtrates of the entomopathogenic fungus Conidiobolus coronatus (Costantin) Batko (Entomophthoramycota: Entomophthorales). After LC–MS/MS (liquid chromatography tandem mass spectrometry) analysis of the tryptic peptide digest of coronatin-2 and a mass spectra database search no orthologs of this protein could be found in fungi. The highest homology was observed to the partial translation elongation factor 1a from Sphaerosporium equinum (protein sequence coverage, 21%), with only one peptide sequence, suggesting that coronatin-2 is a novel fungal protein that has not yet been described. In contrast to coronatin-1, an insecticidal 36 kDa protein, which shows both elastolytic and chitinolytic activity, coronatin-2 showed no enzymatic activity. Addition of coronatin-2 into cultures of hemocytes taken from larvae of Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), resulted in progressive disintegration of nets formed by granulocytes and plasmatocytes due to rapid degranulation of granulocytes, extensive vacuolization of plasmatocytes accompanied by cytoplasm expulsion, and cell disintegration. Spherulocytes remained intact, while oenocytes rapidly disintegrated. Coronatin-2 produced 80% mortality when injected into G. mellonella at 5 µg larva−1. Further study is warranted to determine the relevance of the acute toxicity of coronatin-2 and its effects on hemocytes in vitro to virulence of C. coronatus against its hosts.
This paper reports the effects of BnSP-7 toxin, a catalytically inactive phospholipase A2 from Bothrops pauloensis snake venom, on Leishmania (Leishmania) amazonensis. BnSP-7 presented activity against promastigote parasite forms both in the MTT assay, with IC50 of 58·7 μg mL−1 of toxin, and a growth curve, inhibiting parasite proliferation 60–70% at concentrations of 50–200 μg mL−1 of toxin 96 h after treatment. Also, the toxin presented effects on amastigotes, reducing parasite viability by 50% at 28·1 μg mL−1 and delaying the amastigote–promastigote differentiation process. Ultrastructural studies showed that BnSP-7 caused severe morphological changes in promastigotes such as mitochondrial swelling, nuclear alteration, vacuolization, acidocalcisomes, multiflagellar aspects and a blebbing effect in the plasma membrane. Finally, BnSP-7 interfered with the infective capacity of promastigotes in murine peritoneal macrophages, causing statistically significant infectivity-index reductions (P < 0·05) of 20–35%. These data suggest that the BnSP-7 toxin is an important tool for the discovery of new parasite targets that can be exploited to develop new drugs for treating leishmaniasis.
Besides being cholesterol-lowering agents, phytosterols (PS) can inhibit the growth and development of tumours. The anti-neoplastic activity is accounted for by PS incorporation into cell membranes, resulting in the interference of membrane functionality. The similarity between the PS cholesterol-lowering and anti-neoplastic effective doses deserves attention on the possible adverse effects even in non-neoplastic cells. To date, few studies have addressed the clarification of this important issue. In the present study, we supplemented primary, non-neoplastic neonatal rat cardiomyocytes with two different PS concentrations (3 or 6 μg/ml), both within the range of human plasma concentration. Cardiac cells were chosen as an experimental model since the heart has been reported as the target organ for subchronic toxicity of PS. Following supplementation, a dose-dependent incorporation of PS and a decrease in cholesterol content were clearly evidenced. PS did not induce apoptosis but caused a reduction in metabolic activity (measured as 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion) and a slowing down of cell growth. The lower MTT conversion and the similar lactate dehydrogenase release could suggest that PS more efficiently target mitochondria than plasma membrane integrity. The replacement of cholesterol by PS could also have caused the observed slowing down of cell growth and the reduction in metabolic activity, which could rely on the PS increase, cholesterol decrease, or both. The present study is the first report on the effect of PS in cardiac cells, and although it is difficult to translate the obtained results to the health of heart tissue, it raises concerns about the safety of long-term exposure to physiologically relevant PS concentrations.
Konjac glucomannan (KGM) has been shown to increase human colon microbial ecology and reduce faecal toxicity in mice. The main goal of the present study was to assess the effects of a KGM supplement into a low-fibre diet on precancerous markers of colon cancer in a double-blind, placebo- and diet-controlled study. Adult volunteers consumed defined diets supplemented with konjac (4·5 g/d) or placebo (maize starch) for 4 weeks. Stools collected before and at the end of the supplementation were analysed for β-glucosidase, β-galactosidase and β-glucuronidase activities, microflora and bile acids. Faecal water was co-incubated with Caco-2 cells, a model of human colonocytes, to determine the cytotoxicity and DNA-damaging effect as assessed by the comet assay. The results indicated that the KGM supplement significantly decreased faecal β-glucuronidase activity by 25·6 (se 7·8) % and faecal secondary bile acid level by 42·4 (se 11·8) %. In contrast, consuming the defined diet supplemented with placebo for 4 weeks did not improve these determinants. The KGM-supplemented diet, but not the placebo diet, significantly increased the survival rate (%) of Caco-2 cells co-incubated with faecal water for 1 and 3 h, respectively. In addition, KGM significantly reduced the DNA damage induced by the faecal water alone or in combination with H2O2. The faecal bifidobacteria and lactobacilli levels increased only with the KGM-supplemented diet. Therefore, we conclude that supplementation of KGM into a low-fibre diet improved the faecal microbial ecology and metabolites, which may contribute to the reduced toxicity of faecal water and precancerous risk factors of human colon cancer.
The ability of pathogens to neutralize host defence mechanisms represents a fundamental requisite in the successful establishment of an infection. Host-pathogen interactions between quahog parasite unknown (QPX) and its hard clam host are poorly understood. Our prior in vivo investigations have shown that different QPX isolates display varying levels of pathogenicity toward clams. Similarly, field investigations and laboratory transmission studies revealed some variations in the susceptibility of different hard clam stocks to QPX infection. An in vitro approach was developed in this study to evaluate the toxicity of QPX cells and extracellular products toward haemocytes using a neutral red uptake assay. Results demonstrated that QPX produces virulence factors that are cytotoxic to M. mercenaria haemocytes. This cytotoxicity appears to be induced by clam factors, suggesting that it may play an important role in supporting QPX infection and proliferation within the host. Moreover, application of this technique to different QPX isolates and clam broodstocks indicates variations of QPX cytotoxicity in agreement with previous in vivo experiments, strengthening the existence of different QPX strains.
Infection with the metacestode of Echinococcus granulosus is characterized by a concomitant immunity. Survival of established and developing hydatid cysts in the intermediate host implies a mechanism to modulate its immunological reactions. In order to investigate this mechanism, secondary hydatid cysts were isolated from intraperitoneally infected laboratory white mice (strain NMRI) 12 months p.i. A number of hydatid cysts were freed from the surrounding host adventitial tissue. Monolayer cultures of non-stimulated peritoneal macrophages of NMRI mice were prepared and incubated in the presence of the hydatid cysts. By means of a trypan blue exclusion test and by measuring the incorporation of tritium labelled uridine, it was found that the presence of hydatid cysts reduced the viability of the macrophages in vitro. Toxic substances are probably secreted since the medium of cultured hydatid cysts also displayed cytotoxic activity. Hydatid cysts with adventitia, as well as culture medium of those cysts, were less toxic. When toxins, partially purified from hydatid cyst fluid, were previously incubated on a collagen coated surface, a reduced level of toxicity was found, suggesting that collagen of the host adventitia may play a role in controlling the liberation of toxins by the hydatid cyst. Virtually no toxicity was exerted by protoscoleces or by the medium of cultured protoscoleces, in contrast to in vitro vesiculated protoscoleces (so called microcysts). The results reveal a novel feature of hydatid cysts that may play a role in the survival of the parasite in the immunized host.
Macrophage-like defence cells (haemocytes) of the pond snail Lymnaea stagnalis mediate cytotoxicity through reactive oxygen intermediates (ROIs). This activity is NADPH-oxidase dependent, as in mammalian phagocytes during the respiratory burst. In this study, mother sporocysts of schistosomes, the compatible Trichobilharzia ocellata and the incompatible Schistosoma mansoni evoke in vitro ROI activities (detected by luminol dependent chemiluminescence, LDCL) from L. stagnalis haemocytes. S. mansoni is encapsulated by haemocytes and eliminated, whereas T. ocellata escapes encapsulation and survives. Both schistosomes were equally susceptible to in vitro oxidative damage from exposure to hydrogen peroxide and to ROIs generated by a xanthine/xanthine oxidase system. Protocatechuic acid, a specific antagonist of NADPH-oxidase, delayed the killing of T. ocellata and S. mansoni sporocysts by haemocytes of resistant snails (Biomphalaria glabrata and L. stagnalis, respectively). We conclude that ROIs take part in haemocyte-mediated cytotoxicity. However, neither a snail's capability to generate ROIs, nor a schistosome's susceptibility to ROIs, determine snail/schistosome incompatibility. Snail/schistosome compatibility is rather determined by the parasite's ability modulate haemocyte behaviour such that effective encapsulation and the generation of lethal concentrations of ROIs are prevented.