We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new enantiornithine, Musivavis amabilis n. gen. n. sp., is reported from the Lower Cretaceous Jehol Biota in western Liaoning, China. The new taxon is similar to the bohaiornithids in the robust subconical teeth, bluntly expanded omal ends of the furcula, caudolaterally oriented lateral trabeculae with triangular distal ends of the sternum, and a robust second pedal digit. Yet it differs from members of Bohaiornithidae in several features recalling other enantiornithine lineages, such as the acuminate rostral ramus of maxilla, the shape of the coracoid lateral margin, the presence of craniolateral processes on the sternum, the proportions of the manual phalanges, and the unspecialized third pedal ungual phalanx. A comprehensive phylogenetic analysis of Mesozoic birds shows that homoplasy significantly affects the reconstruction of enantiornithine relationships. When all phylogenetic characters are considered of equal weight, Musivavis is reconstructed in a lineage related to a radiation of large-bodied enantiornithines including Bohaiornithidae and Pengornithidae. Alternative scenarios based on progressive downweighting of the homoplastic characters support more basal placements of the pengornithids among Enantiornithes, but do not alter the affinity of Musivavis as a member of the “bohaiornithid-grade” group.
DNA methylation is one of the most important epigenetic modifications in breast cancer (BC) development, and long-term dietary habits can alter DNA methylation. Cadherin-4 (CDH4, a member of the cadherin family) encodes Ca2+-dependent cell–cell adhesion glycoproteins. We conducted a case–control study (380 newly diagnosed BC and 439 cancer-free controls) to explore the relationship of CDH4 methylation in peripheral blood leukocyte DNA (PBL DNA), as well as its combined and interactive effects with dietary factors on BC risk. A case-only study (335 newly diagnosed BC) was conducted to analyse the association between CDH4 methylation in breast tissue DNA and dietary factors. CDH4 methylation was detected using quantitative methylation-specific PCR. Unconditional logistic regressions were used to analyse the association of CDH4 methylation in PBL DNA and BC risk. Cross-over analysis and unconditional logistic regression were used to calculate the combined and interactive effects between CDH4 methylation in PBL DNA and dietary factors in BC. CDH4 hypermethylation was significantly associated with increased BC risk in PBL DNA (ORadjusted (ORadj) = 2·70, (95 % CI 1·90, 3·83), P < 0·001). CDH4 hypermethylation also showed significant combined effects with the consumption of vegetables (ORadj = 4·33, (95 % CI 2·63, 7·10)), allium vegetables (ORadj = 7·00, (95 % CI 4·17, 11·77)), fish (ORadj = 7·92, (95 % CI 3·79, 16·53)), milk (ORadj = 6·30, (95 % CI 3·41, 11·66)), overnight food (ORadj = 4·63, (95 % CI 2·69, 7·99)), pork (ORadj = 5·59, (95 % CI 2·94, 10·62)) and physical activity (ORadj = 4·72, (95 % CI 2·87, 7·76)). Moreover, consuming milk was significantly related with decreased risk of CDH4 methylation (OR = 0·61, (95 % CI 0·38, 0·99)) in breast tissue. Our findings may provide direct guidance on the dietary intake for specific methylated carriers to decrease their risk for developing BC.
During the last few decades, the lake-terminating glaciers in the Himalaya have receded faster than the land-terminating glaciers as proglacial lakes have exacerbated the mass loss of their host glaciers. Monitoring the impacts of glacier recession and dynamics on lake extent and water volume provides an approach to assess the mass interplay between glaciers and proglacial lakes. We describe the recession of Longbasaba Glacier and estimate the mass wastage and its contribution to the water volume of its proglacial lake. The results show that the glacier area has decreased by 3% during 1988–2018, with a more variable recession prior to 2008 than in the last decade. Longbasaba Lake has expanded by 164% in area and 237% in water volume, primarily as a result of meltwater inflow produced from surface lowering of the glacier. Over the periods 1988–2000 and 2000–18, the mass loss contributed by glacier thinning has decreased from 81 to 61% of the total mass loss, accompanied by a nearly doubled contribution from terminus retreat. With the current rate of retreat, Longbasaba glacier is expected to terminate in its proglacial lake for another four decades. The hazard risk of this lake is expected to continue to increase in the near future because of the projected continued glacier mass loss and related lake expansion.
This article explores the syntax of compound pronouns (e.g. someone, nothing). Several theories of these formatives have been proposed previously (e.g. Kishimoto 2000; Blöhdorn 2009), but most of them fail to account for the fact that compound pronouns behave simultaneously like compounds and phrases. By presenting corpus data of some special coordination and modification patterns of compound pronouns, I argue that they should instead be analysed as compound phrases: constructions which are morphologically compounds, but syntactically phrases. Both features play important roles in determining how compound phrases are modified. Moreover, I propose a modification paradigm based on Larson & Marušič (2004), which classifies common postmodifiers at different levels. Finally, I examine the syntactic behaviour of less frequently used nominal compound pronouns such as nobody, which are supplementary to the phrasal ones.
Toxoplasma gondii rhoptry protein TgROP18 is a polymorphic virulence effector that targets immunity-related GTPases (IRGs) in rodents. Given that IRGs are uniquely diversified in rodents and not in other T. gondii intermediate hosts, the role of TgROP18 in manipulating non-rodent cells is unclear. Here we show that in human cells TgROP18I interacts with the interferon-gamma-inducible protein N-myc and STAT interactor (NMI) and that this is a property that is unique to the type I TgROP18 allele. Specifically, when expressed ectopically in mammalian cells only TgROP18I co-immunoprecipitates with NMI in IFN-γ-treated cells, while TgROP18II does not. In parasites expressing TgROP18I or TgROP18II, NMI only co-immunoprecipitates with TgROP18I and this is associated with allele-specific immunolocalization of NMI on the parasitophorous vacuolar membrane (PVM). We also found that TgROP18I reduces NMI association with IFN-γ-activated sequences (GAS) in the IRF1 gene promoter. Finally, we determined that polymorphisms in the C-terminal kinase domain of TgROP18I are required for allele-specific effects on NMI. Together, these data further define new host pathway targeted by TgROP18I and provide the first function driven by allelic differences in the highly polymorphic ROP18 locus.
Based on attachment theory and a social-cognitive model of posttraumatic stress disorder (PTSD), this study examined the roles of parent–child communication, perceived parental depression, and intrusive rumination in the association between insecure attachment to parents and PTSD among adolescents following the Jiuzhaigou earthquake. In this study, 620 adolescents were recruited to complete self-report questionnaires. The results showed that the direct association between anxious attachment and PTSD was significant, but that between avoidant attachment and PTSD was non-significant. In addition, both anxious and avoidant attachment had indirect associations with PTSD via the mediating effects of parent–child communication openness and problems, perceived parental depression, and intrusive rumination. However, the specific paths between anxious and avoidant attachment and PTSD were different. The findings indicated that insecure attachment among adolescents following the earthquake was predictive for their PTSD, and the mechanisms underlying the association between anxious attachment and PTSD and the association between avoidant attachment and PTSD were distinct. To alleviate PTSD, more attention should be paid to improving the quality of parent–child communication for adolescents with avoidant attachment to parents, and to reducing negative cognition in adolescents with anxious attachment.
In this paper, CNTs reinforced foam aluminum matrix composites with small pore diameter were prepared by powder metallurgy method. When the mass fraction of CNTs was 0.75%, the tensile strength, flexural strength and compressive yield strength of the materials were 3.4 times, 2.4 times and 2.4 times of pure foam aluminum, respectively, reaching the maximum value, which obviously improved the mechanical properties of aluminum foam. The tensile property model of foam aluminum matrix composites was built to predict the properties of the composites, and the effects of defects and reinforcement on the mechanical properties of the composites were compared. The results show that the tensile fitting is consistent with the measured results when the mass fraction of CNTs is less than 0.75%, but the weakening effect of defects on the strength of aluminum foam is much greater than the enhancement of CNTs. With the increase of CNTs mass fraction, the damping loss factor of foam aluminum composites increases, dislocation damping and grain boundary damping play a role in advance, and the damping peak moves to the low temperature region.
A solution to the problem of Gaussian beam scattering by a circular perfect electric conductor coated with eccentrically anisotropic media is presented. The incident Gaussian beam source is expanded as an approximate expression in the simple form with Taylor's series. The transmitted field in the anisotropically coated region is expressed as an infinite summation of Eigen plane waves with different polar angles. The unknown coefficients of the scattered fields are obtained with the aid of the boundary conditions. The addition theorem for cylindrical functions is applied to transfer from the local coordinates to the global ones. The infinite series can be truncated under the prerequisite of achieving the solution convergence. Only the case of transverse-electric polarization is discussed. The similar formulation of transverse-magnetic polarization can be obtained by adopting a similar method. Some numerical results are presented and discussed. The result is in agreement with that available as expected when the eccentric geometry comes to the concentric one.
Social anxiety disorder (SAD) is a prevalent mental disorder diagnosed in childhood and adolescence. Theories regarding brain development and SAD suggest a close link between neurodevelopmental dysfunction at the adolescent juncture and SAD, but direct evidence is rare. This study aims to examine brain structural abnormalities in adolescents with SAD.
Methods
High-resolution T1-weighted images were obtained from 31 adolescents with SAD (15–17 years) and 42 matching healthy controls (HC). We evaluated symptom severity with the Social Anxiety Scale for Children (SASC) and the Screen for Child Anxiety Related Emotional Disorders (SCARED). We used voxel-based morphometry analysis to detect regional gray matter volume abnormalities and structural co-variance analysis to investigate inter-regional coordination patterns.
Results
We found significantly higher gray matter volume in the orbitofrontal cortex (OFC) and the insula in adolescents with SAD compared to HC. We also observed significant co-variance of the gray matter volume between the OFC and amygdala, and the OFC and insula in HC, but these co-variance relationships diminished in SAD.
Conclusions
These findings provide the first evidence that the brain structural deficits in adolescents with SAD are not only in the core regions of the fronto-limbic system, but also represented by the diminished coordination in the development of these regions. The delayed and unsynchronized development pattern of the fronto-limbic system supports SAD as an adolescent-sensitive developmental mental disorder.
Aiming at the influence of coupling coefficient variation on the output voltage of a high-power LCC-S topology inductively coupled power transfer (ICPT) system, a synchronous three-phase triple-parallel Buck converter is used as the voltage adjustment unit. The control method for the three-phase current sharing of synchronous three-phase triple-parallel Buck converter and the constant voltage output ICPT system under the coupling coefficient variation is studied. Firstly, the hybrid model consisting of the circuit averaging model of the three-phase triple-parallel Buck converter and the generalized state-space average model for the LCC-S type ICPT system is established. Then, the control methods for three-phase current sharing of the synchronous three-phase triple-parallel Buck converter and constant voltage output of ICPT system are studied to achieve the multi-objective integrated control of the system. Finally, a 3.3 kW wireless charging system platform is built, the experimental results have verified the effectiveness of the proposed modeling and control method, and demonstrated the stability of the ICPT system.
Generating designs via machine learning has been an on-going challenge in computer-aided design. Recently, deep learning methods have been applied to randomly generate images in fashion, furniture and product design. However, such deep generative methods usually require a large number of training images and human aspects are not taken into account in the design process. In this work, we seek a way to involve human cognitive factors through brain activity indicated by electroencephalographic measurements (EEG) in the generative process. We propose a neuroscience-inspired design with a machine learning method where EEG is used to capture preferred design features. Such signals are used as a condition in generative adversarial networks (GAN). First, we employ a recurrent neural network Long Short-Term Memory as an encoder to extract EEG features from raw EEG signals; this data are recorded from subjects viewing several categories of images from ImageNet. Second, we train a GAN model conditioned on the encoded EEG features to generate design images. Third, we use the model to generate design images from a subject’s EEG measured brain activity. To verify our proposed generative design method, we present a case study, in which the subjects imagine the products they prefer, and the corresponding EEG signals are recorded and reconstructed by our model for evaluation. The results indicate that a generated product image with preference EEG signals gains more preference than those generated without EEG signals. Overall, we propose a neuroscience-inspired artificial intelligence design method for generating a design taking into account human preference. The method could help improve communication between designers and clients where clients might not be able to express design requests clearly.
English vocabulary has expanded over centuries by ‘borrowing’ lexical items from other languages (Katamba, 2005; Durkin, 2014). Compared with European languages, non-European languages are never major sources of word borrowing in English, with Chinese staying even more peripheral. Scholars have recorded no more than a few hundred English words of Chinese origin. This, however, does not make it easier to study the etymology and semantics of Chinese loanwords. The complication arises from the various source dialects from which Chinese words were borrowed (Mandarin, Cantonese, Amoy, Hokkien, etc.) and also from transcription processes, in which Chinese logograms are ‘romanised’ into phonetic representations so as to be readable for English speakers. It is a procedure easily affected by the transcribers' own cognition and the transcription systems employed, and the arbitrariness of the above variables contributes much to the fact that the orthography of Chinese loanwords, especially those entering the English language early, are prone to changes. This article aims to shed some light on how the ways of transcription may affect the spelling of Chinese loanwords.
We present a study of absolute and convective instabilities in electrohydrodynamic flow subjected to a Poiseuille flow (EHD-Poiseuille). The electric field is imposed on two infinite flat plates filled with a non-conducting dielectric fluid with unipolar ion injection. Mathematically, the dispersion relation of the linearised problem is studied based on the asymptotic response of an impulse disturbance imposed on the base EHD-Poiseuille flow. Transverse, longitudinal and oblique rolls are investigated to identify the saddle point satisfying the pinching condition in the corresponding complex wavenumber space. It is found that when the ratio of Coulomb force to viscous force increases, the transverse rolls can transit from convective instability to absolute instability. The ratio of hydrodynamic mobility to electric mobility, which exerts negligible effect on the linear stability criterion when the cross-flow is small, has significant influence on the convective–absolute instability transition, especially when the ratio is small. As we change the value of the mobility ratio, a saddle point shift phenomenon occurs in the case of transverse rolls. The unstable longitudinal rolls are convectively unstable as long as there is a cross-flow, a result which is deduced from a one-mode Galerkin approximation. Longitudinal rolls have a larger growth rate than transverse rolls except for a small cross-flow. Finally, regarding the oblique rolls, a numerical search for the saddle point simultaneously in the complex streamwise and transverse wavenumber spaces always yields an absolute transverse wavenumber of zero, implying that oblique rolls give way to transverse rolls when the flow is unstable.
The strong interactions between Mg and Ni/NiH4 are attributed to harsh operating conditions and difficulties for H2 release, restricting the practical applications of the Mg-based hydrides. In this study, a new method of interstitial nonmetals co-doping was proposed to reduce the strong interactions. The calculation results showed that the method of interstitial nonmetals co-doping causes a more significant reduction in the thermal stability of Mg-based hydrides, as compared with the methods of either single transition metal or nonmetal doping. To determine the influence mechanism, a theoretical study was conducted based on the first-principles calculations. The computations demonstrated that the criss-cross action between B–Ni and N–Mg bonds weakens the bonding effects between Mg and Ni/NiH4. Besides, the mutual interactions between nonmetals and H atoms could weaken Ni–H bonding effects and stimulate the breaking of stable NiH4 clusters, thereby facilitating the release of H2 from the hydride.
The valence states, the distribution of Co ions, and defect structures in the Co-doped ITO films with Co concentrations of 5–13 at.% were examined by X-ray absorption spectroscopy (XAS) at Co, K, and L-edges. The structural analyses and ab initio calculations reveal that the Co atoms are substantially incorporated into the ITO lattice and form cobalt–vacancy complexes, while partial formation of Co0 species is observed for all the films. The analyses of Co–K edge XAS reveal that the Co–O bond length RCo–O is shortened and the corresponding Debye–Waller factor (σ2) obviously increases with Co doping, implying the relaxation of oxygen environment around the substitutional Co ions. The qualitative fitting of Co L3-edge XAS further confirms the coexistence of Co0 and Co2+ in the films. The Co atoms mainly occupy the substitutional sites of In2O3 lattices with the metallic Co clusters being about 20–43 at.% for the 5, 7, and 8.5 at.% Co-doped ITO films. However, a significant fraction (∼57 at.%) of metallic Co clusters is found in the 13 at.% Co-doped ITO film.
Twin glaciers collapsed in 2016 near Aru Co, western Tibet and caused extreme loss to human beings. In this study, we attempted to track the dynamics of glaciers in the region, for example the glacier area and mass changes in Aru Co for the period 1971–2016, which were determined using topographic maps and Landsat images and ASTER-derived DEMs (2011–16), the Shuttle Radar Terrain Mission DEM (2000) and topographic maps (1971). Our results showed that the glacier area of Aru Co decreased by −0.4 ± 4.1% during 1971–2016. The geodetic mass-balance results showed that the glaciers in Aru Co lost mass at a rate of −0.15 ± 0.30 m w.e. a−1 during 1971–99, while they gained mass at a rate of 0.33 ± 0.61 m w.e. a−1 for the period 1999–2016. The twin glaciers experienced a larger negative mass budget than the others in the region before 1999. This process produced large amounts of meltwater, followed by a sustained increase in the meltwater on the pressure melting point, possibly in response to a period of positive mass balance (1999–2016) and then, transferred to the glacier bed until the glaciers collapsed.
The pathophysiology of cognitive impairment in patients with the major depressive disorder (MDD) may involve neuroinflammation mediated by cytokines.
Objective
The aim of this study was to examine the serum interleukin-6 (IL-6) levels, sustained attention, and their association in patients with MDD.
Methods
Thirty patients with MDD and 30 healthy controls were enrolled in this case-control study. Sustained attention was measured using the Rapid Visual Information Processing (RVP) task in the Cambridge Neuropsychological Tests Automated Battery. The serum IL-6 levels of all subjects were assessed by sandwich enzyme-linked immunosorbent assays.
Results
There were significant differences in the log10RVP total hits, log10RVP total misses, and log10RVP mean latency between patients with MDD and healthy controls (F = 6.04, p = 0.017; F = 19.77, p < 0.0001; F = 14.42, p < 0.0001, respectively). The serum levels of Log10IL-6 were significantly higher in patients with MDD than in healthy controls (F = 192.27, p < 0.0001). The log10IL-6 levels were also positively correlated with the log10RVP mean latency in patients with MDD (r = 0.45, p = 0.013). A further stepwise multivariate regression analysis indicated that the log10IL-6 levels were significantly associated with the log10RVP mean latency in patients with MDD (β = 0.31, t = 2.41, p = 0.025).
Conclusions
Our data suggested that increased IL-6 levels were associated with the psychopathology of MDD, and that abnormal IL-6 levels were implicated in the impairment of sustained attention in patients with MDD.
Droplet dynamics in microfluidic applications is significantly influenced by surfactants. It remains a research challenge to model and simulate droplet behaviour including deformation, breakup and coalescence, especially in the confined microfluidic environment. Here, we propose a hybrid method to simulate interfacial flows with insoluble surfactants. The immiscible two-phase flow is solved by an improved lattice Boltzmann colour-gradient model which incorporates a Marangoni stress resulting from non-uniform interfacial tension, while the convection–diffusion equation which describes the evolution of surfactant concentration in the entire fluid domain is solved by a finite difference method. The lattice Boltzmann and finite difference simulations are coupled through an equation of state, which describes how surfactant concentration influences interfacial tension. Our method is first validated for the surfactant-laden droplet deformation in a three-dimensional (3D) extensional flow and a 2D shear flow, and then applied to investigate the effect of surfactants on droplet dynamics in a 3D shear flow. Numerical results show that, at low capillary numbers, surfactants increase droplet deformation, due to reduced interfacial tension by the average surfactant concentration, and non-uniform effects from non-uniform capillary pressure and Marangoni stresses. The role of surfactants on the critical capillary number ($Ca_{cr}$) of droplet breakup is investigated for various confinements (defined as the ratio of droplet diameter to wall separation) and Reynolds numbers. For clean droplets, $Ca_{cr}$ first decreases and then increases with confinement, and the minimum value of $Ca_{cr}$ is reached at a confinement of 0.5; for surfactant-laden droplets, $Ca_{cr}$ exhibits the same variation in trend for confinements lower than 0.7, but, for higher confinements, $Ca_{cr}$ is almost a constant. The presence of surfactants decreases $Ca_{cr}$ for each confinement, and the decrease is also attributed to the reduction in average interfacial tension and non-uniform effects, which are found to prevent droplet breakup at low confinements but promote breakup at high confinements. In either clean or surfactant-laden cases, $Ca_{cr}$ first remains almost unchanged and then decreases with increasing Reynolds number, and a higher confinement or Reynolds number favours ternary breakup. Finally, we study the collision of two equal-sized droplets in a shear flow in both surfactant-free and surfactant-contaminated systems with the same effective capillary numbers. It is identified that the non-uniform effects in the near-contact interfacial region immobilize the interfaces when two droplets are approaching each other and thus inhibit their coalescence.
Two-dimensional scattering of a Gaussian beam by a homogeneous gyrotropic circular cylinder is presented. The incident Gaussian beam source is expanded as an approximate expression with Taylor's series. The transmitted field in the homogeneous gyrotropic cylinder is expressed in terms of the series of wave functions based on the integral equation. The unknown coefficients of the scattered fields are obtained with the aid of the boundary conditions of continuous tangential electric and magnetic fields. Some numerical results are presented and discussed. The result is in agreement with that available as expected when the Gaussian beam degenerates to a plane wave incidence case.