Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:15:13.344Z Has data issue: true hasContentIssue false

Scattering of a Gaussian beam by an anisotropic-coated eccentric conducting circular cylinder

Published online by Cambridge University Press:  27 April 2020

Shi-Chun Mao*
Affiliation:
Institute of Information Engineering, Suqian College, Suqian, Jiangsu223800, China
Zhen-Sen Wu
Affiliation:
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi710071, China
Zhaohui Zhang
Affiliation:
Institute of Information Engineering, Suqian College, Suqian, Jiangsu223800, China
Jiansen Gao
Affiliation:
Institute of Information Engineering, Suqian College, Suqian, Jiangsu223800, China
Lijuan Yang
Affiliation:
Institute of Information Engineering, Suqian College, Suqian, Jiangsu223800, China
*
Author for correspondence: Shi-Chun Mao, E-mail: mscgroup@163.com

Abstract

A solution to the problem of Gaussian beam scattering by a circular perfect electric conductor coated with eccentrically anisotropic media is presented. The incident Gaussian beam source is expanded as an approximate expression in the simple form with Taylor's series. The transmitted field in the anisotropically coated region is expressed as an infinite summation of Eigen plane waves with different polar angles. The unknown coefficients of the scattered fields are obtained with the aid of the boundary conditions. The addition theorem for cylindrical functions is applied to transfer from the local coordinates to the global ones. The infinite series can be truncated under the prerequisite of achieving the solution convergence. Only the case of transverse-electric polarization is discussed. The similar formulation of transverse-magnetic polarization can be obtained by adopting a similar method. Some numerical results are presented and discussed. The result is in agreement with that available as expected when the eccentric geometry comes to the concentric one.

Type
EM Field Theory
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)