We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the geometry of the component of the origin in the uniform spanning forest of $\mathbb{Z}^{d}$ and give bounds on the size of balls in the intrinsic metric.
We study the heat semigroup maximal operator associated with a well-known orthonormal system in the $d$-dimensional ball. The corresponding heat kernel is shown to satisfy Gaussian bounds. As a consequence, we can prove weighted $L^{p}$ estimates, as well as some weighted inequalities in mixed norm spaces, for this maximal operator.
Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $N\rightarrow \infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e., for non-integrable Riesz kernels of the form $|x-y|^{-s}$ with $s>d$. As a consequence, we immediately get (thanks to the poppy-seed bagel theorem) lower estimates for the large $N$ limits of minimal hypersingular Riesz energy on compact $d$-rectifiable sets. Furthermore, for the Gaussian potential $\exp (-\unicode[STIX]{x1D6FC}|x-y|^{2})$ on $\mathbb{R}^{p}$, we obtain lower bounds for the energy of infinite configurations having a prescribed density.
Let ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ be Dirichlet spaces with superharmonic weights induced by positive Borel measures $\unicode[STIX]{x1D707}$ on the open unit disk. Denote by $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ Möbius invariant function spaces generated by ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$. In this paper, we investigate the relation among ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$, $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ and some Möbius invariant function spaces, such as the space $BMOA$ of analytic functions on the open unit disk with boundary values of bounded mean oscillation and the Dirichlet space. Applying the relation between $BMOA$ and $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$, under the assumption that the weight function $K$ is concave, we characterize the function $K$ such that ${\mathcal{Q}}_{K}=BMOA$. We also describe inner functions in $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ spaces.
In this paper, a new formulation is proposed to evaluate the origin intensity factors (OIFs) in the singular boundary method (SBM) for solving 3D potential problems with Dirichlet boundary condition. The SBM is a strong-form boundary discretization collocation technique and is mathematically simple, easy-to-program, and free of mesh. The crucial step in the implementation of the SBM is to determine the OIFs which isolate the singularities of the fundamental solutions. Traditionally, the inverse interpolation technique (IIT) is adopted to calculate the OIFs on Dirichlet boundary, which is time consuming for large-scale simulation. In recent years, the new methodology has been developed to efficiently calculate the OIFs on Neumann boundary, but the Dirichlet problem remains an open issue. This study employs the subtracting and adding-back technique based on the integration of the fundamental solution over the whole boundary to develop a new formulation of the OIFs on 3D Dirichlet boundary. Several problems with varied domain shapes and boundary conditions are carried out to validate the effectiveness and feasibility of the proposed scheme in comparison with the SBM based on inverse interpolation technique, the method of fundamental solutions, and the boundary element method.
The main aim of this article is to establish analogues of Landau’s theorem for solutions to the $\overline{\unicode[STIX]{x2202}}$-equation in Dirichlet-type spaces.
We present DASHMM, a general library implementing multipole methods (including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dynamic adaptive runtime techniques provided by the HPX-5 system to parallelize the resulting multipole moment computation. The result is a library that is easy-to-use, extensible, scalable, efficient, and portable. We present both the abstractions defined by DASHMM as well as the specific features of HPX-5 that allow the library to execute scalably and efficiently.
We present RECFMM, a program representation and implementation of a recursive scheme for parallelizing the adaptive fast multipole method (FMM) on shared-memory computers. It achieves remarkable high performance while maintaining mathematical clarity and flexibility. The parallelization scheme signifies the recursion feature that is intrinsic to the FMM but was not well exploited. The program modules of RECFMM constitute a map between numerical computation components and advanced architecture mechanisms. The mathematical structure is preserved and exploited, not obscured nor compromised, by parallel rendition of the recursion scheme. Modern software system—CILK in particular, which provides graph-theoretic optimal scheduling in adaptation to the dynamics in parallel execution—is employed. RECFMM supports multiple algorithm variants that mark the major advances with low-frequency interaction kernels, and includes the asymmetrical version where the source particle ensemble is not necessarily the same as the target particle ensemble. We demonstrate parallel performance with Coulomb and screened Coulomb interactions.
In this paper, we investigate the properties of locally univalent and multivalent planar harmonic mappings. First, we discuss coefficient estimates and Landau’s theorem for some classes of locally univalent harmonic mappings, and then we study some Lipschitz-type spaces for locally univalent and multivalent harmonic mappings.
Let $p$ be a real number greater than one and let $\Gamma $ be a graph of bounded degree. We investigate links between the $p$-harmonic boundary of $\Gamma $ and the ${D}_{p} $-massive subsets of $\Gamma $. In particular, if there are $n$ pairwise disjoint ${D}_{p} $-massive subsets of $\Gamma $, then the $p$-harmonic boundary of $\Gamma $ consists of at least $n$ elements. We show that the converse of this statement is also true.
In this paper, we study the properties of $k$-plurisubharmonic functions defined on domains in ${ \mathbb{C} }^{n} $. By the monotonicity formula, we give an alternative proof of the weak continuity of complex $k$-Hessian operators with respect to local uniform convergence.
We study recurrence and transience for Lévy processes induced by topological transformation groups acting on complete Riemannian manifolds. In particular the transience–recurrence dichotomy in terms of potential measures is established and transience is shown to be equivalent to the potential measure having finite mass on compact sets when the group acts transitively. It is known that all bi-invariant Lévy processes acting in irreducible Riemannian symmetric pairs of noncompact type are transient. We show that we also have ‘harmonic transience’, that is, local integrability of the inverse of the real part of the characteristic exponent which is associated to the process by means of Gangolli’s Lévy–Khinchine formula.
The method of deriving scaling limits using Dirichlet-form techniques has already been successfully applied to a number of infinite-dimensional problems. However, extracting the key tools from these papers is a rather difficult task for non-experts. This paper meets the need for a simple presentation of the method by applying it to a basic example, namely the convergence of Brownian motions with potentials given by n multiplied by the Dirac delta at 0 to Brownian motion with absorption at 0.
We study a Dirichlet problem involving the weak Laplacian on the Sierpiński gasket, and we prove the existence of at least two distinct nontrivial weak solutions using Ekeland’s Variational Principle and standard tools in critical point theory combined with corresponding variational techniques.
Let (X,d) be a compact metric space and let ℳ(X) denote the space of all finite signed Borel measures on X. Define I:ℳ(X)→ℝ by and set M(X)=sup I(μ), where μ ranges over the collection of signed measures in ℳ(X) of total mass 1. The metric space (X,d) is quasihypermetric if for all n∈ℕ, all α1,…,αn∈ℝ satisfying ∑ i=1nαi=0 and all x1,…,xn∈X, the inequality ∑ i,j=1nαiαjd(xi,xj)≤0 holds. Without the quasihypermetric property M(X) is infinite, while with the property a natural semi-inner product structure becomes available on ℳ0(X), the subspace of ℳ(X) of all measures of total mass 0. This paper explores: operators and functionals which provide natural links between the metric structure of (X,d), the semi-inner product space structure of ℳ0(X) and the Banach space C(X) of continuous real-valued functions on X; conditions equivalent to the quasihypermetric property; the topological properties of ℳ0(X) with the topology induced by the semi-inner product, and especially the relation of this topology to the weak-* topology and the measure-norm topology on ℳ0(X); and the functional-analytic properties of ℳ0(X) as a semi-inner product space, including the question of its completeness. A later paper [P. Nickolas and R. Wolf, Distance geometry in quasihypermetric spaces. II, Math. Nachr., accepted] will apply the work of this paper to a detailed analysis of the constant M(X).
Convexity and weak closeness of the set of Φ-superharmonic functions in a bounded Lipschitz domain in Rn is considered. By using the fact of that Φ-superharmonic functions are just the solutions to an obstacle problem and establishing some special properties of the obstacle problem, it is shown that if Φ satisfies Δ2-condition, then the set is not convex unless Φ(r) = Cr2 or n = 1. Nevertheless, it is found that the set is still weakly closed in the corresponding Orlicz-Sobolev space.
We introduce a class of “differential operators” on graphs and we prove an energy estimate and a Liouville type theorem depending on some structural properties of the operators considered.