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Abstract

We study recurrence and transience for Lévy processes induced by topological transformation groups
acting on complete Riemannian manifolds. In particular the transience-recurrence dichotomy in terms
of potential measures is established and transience is shown to be equivalent to the potential measure
having finite mass on compact sets when the group acts transitively. It is known that all bi-invariant
Lévy processes acting in irreducible Riemannian symmetric pairs of noncompact type are transient. We
show that we also have ‘harmonic transience’, that is, local integrability of the inverse of the real part of
the characteristic exponent which is associated to the process by means of Gangolli’s Lévy—Khinchine
formula.
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1. Introduction

Lévy processes in Lie groups have recently attracted considerable interest and the
monograph [28] is dedicated to their investigation. The purpose of this paper is to
develop some theoretical insight into the recurrence and transience of such processes.
Lévy processes are often considered as natural continuous-time generalisations of
random walks. It is well known that recurrence and transience of random walks in
groups is intimately related to volume growth in the group (see [5, 6, 18]). From
another point of view, a path continuous Lévy process on a group is a Brownian motion
with drift and there has been a great deal of work on transience/recurrence of Brownian
motion in the more general context of processes on Riemannian manifolds. For a nice
survey, see [17].
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The classic analysis of transience and recurrence for Lévy processes on locally
compact abelian groups involves a subtle blend of harmonic analytic and probabilistic
techniques. This work was carried out by Port and Stone [30] who showed that a
necessary and sufficient condition for transience is local integrability of the real part
of the inverse of the characteristic exponent with respect to the Plancherel measure on
the dual group. A nonprobabilistic version of this proof was given by It6 [26]—see
also [21, Section 6.2] and [24]. It relies heavily on reduction to the case where the
group is of the form R? x Z”.

Harmonic analytic methods may, at least in principle, be applied to the
noncommutative case if we work with Gelfand pairs (G, K) (or more generally, with
hypergroups for which we refer readers to [10, Section 6.3]). Here we can take
advantage of the existence of spherical functions to develop harmonic analysis of
probability measures in the spirit of the abelian case — indeed in the important case
where G is a connected Lie group and K is a compact subgroup (so that G/K is a
symmetric space), a Lévy—Khintchine type formula which classifies bi-invariant Lévy
processes in terms of their characteristic exponent was developed by Gangolli [16].
For further developments of these ideas, see [1, 29] and the survey article [22]. An
important approach to establishing the transience of a Markov process is to prove that
the associated Dirichlet form gives rise to a transient Dirichlet space. A comprehensive
account of this approach can be found in [15, Section 1.5]. Bi-invariant Dirichlet forms
associated to Gelfand pairs (G, K) were first studied in a beautiful paper by Berg [7].
He was able to establish that if the Dirichlet space is transient then the inverse of the
characteristic exponent is locally integrable with respect to Plancherel measure on the
space of positive definite spherical functions. However he was only able to establish
the converse to this result in the case where the group was compact or of rank-one.
By using different techniques, Berg and Faraut [8] (see also the survey [23]) were
able to show that all bi-invariant Lévy processes associated to noncompact irreducible
Riemannian symmetric pairs are transient as are the associated Dirichlet spaces in
the symmetric case. One of the goals of the current paper is to show that all such
processes are harmonically transient in the sense that the inverse of the real part of the
characteristic exponent is locally integrable with respect to Plancherel measure. Note
that this is a slightly stronger result than is obtained in the Euclidean case.

The organisation of this paper is as follows. First we study Lévy processes in
a quite abstract context, namely topological transformation groups G acting on a
complete metric space M. This allows us to work with processes on the group
and then study the induced action on the space of interest. For the main part of
the paper, M will be a complete Riemannian manifold. There are three key results
here. First we establish a recurrence/transience dichotomy for the induced process in
terms of potential measures of open balls. This part of the paper closely follows the
development given in Sato [31, Section 7.35] for Euclidean spaces. Secondly we show
that such processes are always recurrent when the space is compact, and thirdly, when
the group acts transitively, we establish that transience of the process is equivalent to
the finiteness of the potential measure on compact sets. This last result (well known in
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the abelian case) is important for bridging the gaps between probabilistic and analytic
approaches to transience.

In the second half of the paper we specialise by taking the group G to be a
noncompact semisimple group having a finite centre. We fix a compact subgroup K so
that we can consider the action on the symmetric space G/K. We consider symmetric
K-bi-invariant Lévy processes within this context. Using the spherical transform, we
establish pseudo-differential operator representations of the Markov semigroup, its
generator and the associated Dirichlet form which may be of interest in their own
right (cf. [3]). We then establish the result on harmonic transience as described above.

Norarion. If M is a topological space, B(M) is the o-algebra of Borel measurable
subsets of M, B,(M) is the Banach space of all bounded Borel measurable real-valued
functions on M (equipped with the supremum norm || - ||). When M is locally compact
and Hausdorff then Cy(M) is the closed subspace of B,(M) comprising continuous
functions on M which vanish at infinity and C.(M) is the dense linear manifold in
Co(M) of continuous functions on M which have compact support. If F (M) is any
real linear space of real-valued functions on M, then 7, (M) always denotes the cone
therein of nonnegative elements. Throughout this article, G is a topological group
with neutral element e. For each o € G, I, denotes left translation on G and [}, is its
differential. If m is a Haar measure on a locally compact group G, we write m(do)
simply as do. When G is compact, we always take m to be normalised. The reversed
measure [ that is associated to each Borel measure u on a topological group G is
defined by f1(A) := u(A™") for each A € B(G). If f € L'(G, p) we will sometimes write
u(f) = fG fdu. If X and Y are G-valued random variables defined on some probability

spaces, with laws Py and Py, respectively, then X 4 Y means Px = Py. R* := [0, o).
We will use Einstein summation convention throughout this paper. The complement
of aset Ais A°.

2. Transformation groups and Lévy processes

2.1. Probability on transformation groups. Let G be a topological group with
neutral element e, M be a topological space and @ : G X M — M be continuous. We
say that (G, M, @) is a transformation group if for all m € M:

(T1) ®(e,m)=m;

(T2) ®(o, (1, m)) = O(or, m), for all o, T € G;

in other words, @ is a left action of G on M.

For fixed m € M, we will often write @, to denote the continuous map from G to
M defined by @, := O(-, m). We will be particularly interested in the case where M is
a Riemannian manifold. We then say that (G, M, ®@) is Riemannian.

The transformation group (G, M, @) is said to be transitive if for all m, p € M there
exists o € G such that p = ®(c, m). In this case each mapping ®,, is surjective. A rich
class of transitive transformation groups is obtained by choosing a closed subgroup K
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of G and taking M to be the homogeneous space G/K of left cosets. In this case, we
will write
D,(0) :=D(o, p) = 07K,

where p = 7K for some 7 € G. The canonical surjection from G to G/K will be denoted
by 7.

Now let (Q, F, P) be a probability space and X be a G-valued random variable
with law py. For each m € M we obtain an M-valued random variable X% by the
prescription X% := @,,(X). The law of X% is p?"" := px o @, ! and it is clear that
if Y is another G-valued random variable then X®” and Y®" are independent if X
and Y are. Sometimes we will work with a fixed m € M and in this case we will
write X® = X®™_ In the case where M = G/K we will always take m = eK and write
X7 = X0,

2.2. Metrically invariant transformation groups. For much of the work that we
will carry out in this paper we will need additional structure on the transformation
group (G, M, ®). Specifically we will require the space M to be metrisable by a
complete invariant metric d. In this case we will say that (G, M, ®@) is metrically
invariant. We emphasise that invariance in this context is the requirement that

d(®(c, my), (o, my)) = d(my, my),

for all m;,my € M, 0 €G.
Two examples will be of particular relevance for our work:

ExawmpLE 2.1. Compact Lie groups.

Here M =G is a compact Hausdorff Lie group and @ is left translation. Fix an
inner product (:,-) on g and let ((X, Y)) := fG(lj‘,X, [2Y)do for all X,Y eg. Then
{{-, -)) induces a left-invariant Riemannian metric on G and the associated distance
function inherits left invariance. Since G is compact, it is geodesically complete
and so is a complete metric space by the Hopf—-Rinow theorem (see, for example,
[12, pages 26-27]).

ExampLE 2.2. Symmetric spaces [19, 32].

Let G be a Lie group that is equipped with an involutive automorphism ® and
let K be a compact subgroup of G such that ®(K)C K. M =G/K is then a C*-
manifold and we take m = n(e) = eK. Let g be the Lie algebra of G. We may write
g=1&p, where 1 and p are the +1 and —1 eigenspaces of ®@*, respectively, and we
have n*(p) = T,,,(M). Every positive definite Ad(K)-invariant inner product defines a
G-invariant Riemannian metric on M under which M becomes a globally Riemannian
symmetric space (with geodesic symmetries induced by ®). Integral curves of left-
invariant vector fields on G project to geodesics on M and completeness follows by
the same argument as in Example 2.1.

In particular, if G is semi-simple then 1=Kk where k is the Lie algebra of K
and g=k@p is a Cartan decomposition of g. Using the fact that any tangent
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vector Y, € T,(M) (where g = 7K for 7 € G) is of the form [; o 7*(Y) for some Y € p,
the required metric is given by

<an Zq) = B(Y, 2),

where Z, = I o 7°(Z) and B is the Killing form on g.

A third important class of examples is obtained by taking M to be an arbitrary
geodesically complete Riemannian manifold and G to be the group of all isometries
of M.

3. Lévy processes in groups

Let Z = (Z(1), t > 0) be a stochastic process defined on (€2, , P) and taking values
in the topological group G. The right increment of Z between s and ¢ where s < t is the
random variable Z(s)"'Z(¢).

We say that Z is a Lévy process in G if it satisfies the following:

1. Z has stationary and independent right increments;

2. Z(0)=e(as.);

3. Z is stochastically continuous, that is, limg, P(Z(s)"'Z(f)e A) =0 for all A €
B(G) withe ¢ A and all £ > 0.

Note that Z is called a left Lévy process in [28]. The corresponding notion of
right Lévy process is obtained by using left instead of right increments, where the left
increment of Z between s and ¢, s < 1, is the random variable Z(£)Z(s)".

Now let (u;,t>0) be the law of the Lévy process Z, then it follows from the
definition that (u,, t > 0) is a weakly continuous convolution semigroup of probability
measures on G, where the convolution operation is defined for probability measures u
and v on G to be the unique probability measure y * v such that

f Jfo)u*v)(do) = f f flonu(dov(dr),
G G JG
for each f € B,(G). In particular, we have, for all s, t > 0,

Hs+t = fs * py - and }gg He = fo = e,

where 6, is the Dirac measure concentrated at e, and the limit is taken in the weak
topology of measures.

We obtain a contraction semigroup of linear operators (74, t > 0) on B,(G) by the
prescription

(Tif)(o) = E(f(cZ(1) = fG flot)u(dr), (3.1)

for each 1 > 0, f € B,(G), o € G. The semigroup is left-invariant in that L, T, = T;L,
foreach t > 0, o € G, where L, f(1) = f(o~'1) for all f € B,(G), T €G.
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Conversely, given any weakly continuous convolution semigroup of probability
measures (i, ¢ >0) on G, we can always construct a Lévy process Z = (Z(¢), t > 0)
such that each Z(¢) has law g, by taking Q to be the space of all mappings from R* to G
and ¥ to be the o-algebra generated by cylinder sets. The existence of P then follows
by Kolmogorov’s construction, and the time-ordered finite-dimensional distributions
have the form

P(Z(ll) € Al, Z([z) €A2, ey Z(ln) EAn)

=fff Lo (c)1p,(0102) - - 14, (0102 - - - o)y, (dory)
¢ Ja G
X Uy—1, (do) - - ',Utn—tn,l(do'n),

for all Aj,As,...,4,€8(G),0<t1 <t <...<t,<oco. For a proof in the case
G =RY, see [31, Theorem 10.4 on pages 55-57]. The extension to arbitrary G is
straightforward. The Lévy process Z that is constructed by these means is called a
canonical Lévy process.

If G is a locally compact Hausdorff group then (77, t > 0) is a left-invariant Feller
semigroup in that

Ti(Co(G)) € Co(G)  and ltlll(l)l IT.f = fllI=0

for each f € Cyo(G). The infinitesimal generator of (74, > 0) is denoted by A. A
characterisation of (A can be found in [11] (see [25, 28] for the Lie group case.) It
follows from the argument in [28, page 10] that if (Z(¢), t > 0) is a G-valued Markov
process with left-invariant Feller transition semigroup then it is a Lévy process.
Moreover, if G is separable and metrisable as well as being locally compact then by
[14, Theorem 2.7 in Ch. 4, page 169], the process has a cadlag modification (that is one
that is almost surely right continuous with left limits.)

Let (G, M, ®) be a transformation group and (Z(#), ¢ > 0) be a Lévy process on
G. Then for each m € M, t > 0 we define Z*"(f) := ®,,(Z(¢)). The M-valued process
Z%m = (Z%™(), t > 0) will be called a Lévy process on M starting at m. This is to
some extent an abuse of terminology as the one-point motion Z® is not, in general, a
Markov process if Z is (as we have assumed) a left Lévy process. However, this will
be the case when M is a symmetric space as in Section 5. Note that (as is shown in [28,
Proposition 2.1 on page 33]), the left action always produces a Markov process on M
when Z is a right Lévy process and the reader can check that all the results that we
obtain in the next section are also valid in this case.

4. Criteria for recurrence and transience

Throughout this section, (G, M, ®) will be a metrically invariant transformation
group and d will denote the complete metric on M, Z will be a Lévy process on G and
Z®™ will be the associated Lévy process on M starting at m.
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We say that Z is recurrent at m if

lim inf d(Z*™(),m)=0 (as.),
t—o0

and transient at m if
ymdgmmwm:w (a.s.).

If (G, M, ®) is also transitive, it follows easily from the invariance of d that if
Z is recurrent (respectively, transient) at any given point of M then it is recurrent
(respectively, transient) at every point of M.

Define the potential measure V associated to Z by

V(A) = foo us(A) ds,
0

so that V(B) € [0, o], for each B € B(G). For each m e M, the induced potential
measure on B(M) is defined by

VoM vod !

In the following, we will frequently apply V®™ to open balls of the form B,(m) =
{p €M :d(p, m) < r} for some r > 0. When m € M is fixed, we will write V® := V",

The following transience—recurrence dichotomy gives a characterisation in terms of
the behaviour of potential measures in the case where M is a (complete) Riemannian
manifold.

TueorEM 4.1. If Z = (Z(t),t > 0) is a Lévy process in a group G and (G, M, ®) is a
metrically invariant Riemannian transformation group then for fixed m € M:

(1) Z is either recurrent or transient at m,

(2)  Z is recurrent if and only if V®(B,(m)) = oo for all r > 0;

(3) Z is recurrent if and only iffooo IBr(m)(Z‘D(t)) dt = oo (a.s.), for all r > 0;
(4)  Z is transient if and only if V®(B.(m)) < oo, for all r > 0;

(5) Zis transient if and only iffooo IBr(m)(Z(D(t)) dt < oo (a.s.), for all r > 0.

Proor. We omit the full details, as this proof is carried out in the same way as the
analogous proof for the case G = M = R“, which can be found in [31, pages 237-242].
The main difference is that we systematically replace the Euclidean norm |- | with
d(m, ) in all arguments. So analogues of (1), (2) and (3) are first established for
G-valued random walks (see also [18, pages 19-20]). Observe that for each h > 0,
(Z(nh), n € Z,) is a random walk on G since for each n € N,

Z(nh) = Z(h).Z(h)™'Z22h) - - - Z((n = 2)h) "' Z((n = Dh).Z((n = Dh)"'Znh)

is the composition of 7 i.i.d. G-valued random variables.
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Another important step in the proof which we emphasise is the generalisation of
the following inequality, due to Kingman [27] in the case G = RY, that is, there exists
v :R* — R with lim¢o y(e) = 1, such that for all r, €, £ > 0,

P(foo IBZr(m)(Z(D(s)) ds > E)
> y(e)P(d(Zq)(s + 1), m) < r, for some s > 0).

To illustrate how the arguments work we present the proof of (4). First observe that
by (1) if Z is transient it is not recurrent and so (2) fails to hold, hence (4) holds.
Conversely assume that V®(B,(m)) < oo, for all >0 and choose € so that y(e) > %
By the Markov and Kingman inequalities we find that for all 7 > 0,

E[ f 1 on(Z(5) ds] > EP[ f T on(Z0(s)) ds > e]

> gP(d(ZCD(s + 1), m) <r, for some s > 0).

By Fubini’s theorem,
VO(By,(m)) = E[ f 13y o (Z2(5)) ds],
0

and so by our assumption, ft *1 Bg,(m)(Z(D(s)) ds < oo (a.s.). By a similar argument we
find that

—00

lim E[ f e (Z2(5)) ds] -0,

and hence lim,_,., P(d(Z®(s + t), m) <r, for some s > 0) =0. Transience at m then
follows from the observation that

{tlim d(Z%(f), m) = oo} = m {(d(Z®(s + n), m) > k for all s > 0}.
=1

k=1 n
This completes the proof of the theorem. O

We now show that, just as in the case G = R4, the recurrence or transience of Lévy
processes is related to that of certain embedded random walks. Again the proof of this
theorem follows along the same lines as that in Sato [31, page 242]. This time, we
give more of the details.

TueOREM 4.2. If the G-valued random walk (Z(nh), n € Z,) is recurrent at m € M for
some h >0, then so is the Lévy process Z. Conversely, if Z is a cadlag G-valued Lévy
process that is recurrent at m € M, then there exists h > 0 such that the random walk
(Z(nh), n € Z,) is recurrent at m.

Proor. Suppose the random walk is recurrent at m, then lim inf,_., d(Z®(nh), m) = 0
(a.s.). Since
0 < lim inf d(Z®(¢), m) < lim inf d(Z®(nh), m) = 0,
t—o00 n—oo

we see that Z is recurrent.
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Conversely, suppose that Z is recurrent at m. First note that sup o d(Z%(s), m) <
oo (a.s.) for each h > 0 since Z is cadlag and d is continuous. It follows that there
exists 2> 0, r > 0 such that P(sup (o d(Z®(s),m) <r) > % By the argument of [31,
page 241] ((3) = (4) therein), we deduce that

P(Z®(nh) € By, (m)) > —

nh
o f P(Z%(¢) € By, (m)) dt.

(n-Dh
From this and Theorem 4.1(2), it follows that 377, P(Z®(nh) € Bs,(m)) = oo and so the
random walk is recurrent, as required. O

We complete this section by establishing two straightforward but useful results.

Prorosition 4.3. If M is compact then every G-valued cadlag Lévy process is recurrent
at every point m € M.

Proor. The mapping p — d(m, p) from M to R is continuous and hence its image
is compact. Consequently, the mapping t — d(m, Z®()) is a.s. bounded for every
cadlag Lévy process (Z(¢),t > 0) on G, and so such a process cannot be transient.
Hence it is recurrent by Theorem 4.1(1). O

Remark. Take G = M in Proposition 4.3 to be a compact Lie group equipped with a
left-invariant Riemannian metric. It follows from [4, Lemma 5.4] that (modulo some
technical conditions on the characteristics of (u;, ¢ > 0)) the unique invariant measure
for the Markov semigroup (77, t > 0) is (normalised) Haar measure.

Tueorem 4.4. Let (G, M, ®) be a metrically invariant Riemannian transformation
group and Z = (Z(t),t > 0) be a Lévy process in G. If Z®" is transient at m then
V®M(K) < oo for every compact set K in M. If (G, M, ®) is also transitive then the
converse statement holds.

Proor. Fix m € M. If Z is transient at m then V®"(B,(p)) < oo for all p € M, r > 0. To
see this, observe that we can always find a u > 0 such that B,(p) C B,(m). Then by
Theorem 4.1(4), we have V®"(B,(p)) < V®™(B,(m)) < co. Now since M is complete,

every compact K in M is totally bounded and so we can find NeN, py,...,pye M
and rq, ..., ry > 0 such that K C Ufil B,.(p:). Hence
N

VOM(K) < S V(B (pi) < oo,

i=1

as was required.

Now suppose that (G, M, ®) is transitive and assume that V®(K) < co for every
compact set K in M. Since M is locally compact and Hausdorff there exists a compact
K which has nonempty interior K°, and we choose p € K°. Then we can find r > 0 such
that B,(p) C K°. Hence V®"(B,(p)) < V*"(K®) < V®"(K) < o0 and so by transitivity
V®™(B,(m)) < 0. Hence, by Theorem 4.1 the process cannot be recurrent and so it is
transient. ]
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5. Transience and harmonic transience for bi-invariant convolution semigroups
on noncompact symmetric pairs

In this section we will be concerned with weakly continuous bi-invariant
convolution semigroups of probability measures (u;, t > 0) defined on noncompact
Riemannian symmetric pairs (G, K). We begin with some harmonic analysis of the
associated left-invariant Feller semigroup on G and its generator.

5.1. Spherical representation of semigroups and generators. Let (G, K) be a
Riemannian symmetric pair of noncompact type so G is a connected semisimple Lie
group with finite centre and K is a maximal compact subgroup. We note that G is
unimodular and we fix a bi-invariant Haar measure. The Iwasawa decomposition
gives a global diffeomorphism between G and a direct product KAN, where A and
N are simply connected with A being abelian and N nilpotent wherein each ge G
is mapped onto k(g) exp(H(g))n(g), where k(g) € K, n(g) € N and H(g) € a which is
the Lie algebra of A. We recall that the spherical functions on (G, K) are the unique
mappings ¢ € C(G, C) for which ¢ # 0 and

f B(kT) dk = H)H(D), 5.1)
K

for all o, T € G. We refer the reader to [20] for general facts about spherical functions.
In particular, it is shown therein that every spherical function on G is of the form

Pa(0) = f QR HGO) g (5.2)
K

for o € G, where 4 € ag,, which is the complexification of the dual space a* of a, and p
is half the sum of positive roots (relative to a fixed lexicographic ordering). Note that
if A € a* then ¢, is positive definite.

A Borel measure g on G is said to be K-bi-invariant if

ukiAkz) = pu(A),

forall ki, k; € K, A € B(G). The set M(K\G/K) of all K-bi-invariant Borel probability
measures on G forms a commutative monoid under convolution, that is,

PxV=VEp,

for all u, v e M(K\G/K). The spherical transform of u € M(K\G/K) is defined by

) = fG pa(o)u(do),

for all 4 € af.. Note that
V() = (), (5.3)

for all u,v e M(K\G/K), A € ag..
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Fix a basis (X;, 1 < j < n) of the Lie algebra g of G, where n is the dimension of
G. As is shown in [25, 28], there exist functions x; € C°(G), 1 <i < n, so that x;(e) =
0, Xixj(e) = 6;; and {x;, 1 <i < n} are canonical coordinates for G in a neighbourhood
of the identity in G. A measure v defined on B(G — {e}) is called a Lévy measure
whenever fG_{e}(Z;’:] xi(0)*)v(do) < oo and V(U°) < oo for any Borel neighbourhood
Uof G.

From now on we will assume that the measures forming the convolution semigroup
(us, t>0) are K-bi-invariant for each 7r>0. Recall that (7,,t>0) is a Feller
semigroup which extends to a Markovian semigroup on L*(G). Under the bi-
invariance assumption, it follows that for each ¢ > 0, T, preserves the real Hilbert space
L*(K\G/K) of K-bi-invariant square integrable functions on G. Let || - ||, denote the
norm in L*(G). From now on we make the following assumption.

ASSUMPTION. aq := lim,_o(1/D)||T4||» <O.

The importance of this assumption is precisely that it excludes the degenerate case
that y, is equal to normalised Haar measure on K for all ¢ > 0.
We have Gangolli’s Lévy—Khintchine formula (see [1, 16, 29])

(D) = exp{—tnal, (5.4)

forall A1 € a*, r> 0. Here
m =B+ f (1 = ga(D)¥(d7), (5.5)
G—{e}

where 8, € C and v is a K-bi-invariant Lévy measure on G (see [16, 29] for details).
We call 7, the characteristic exponent of the convolution semigroup. We will always
assume that (G, K) is irreducible, that is, that the adjoint action of K leaves no proper
subspace of p invariant. In this case 8, > 0. Note that @y = —19 < 0, as required (see [8,
page 286].) We can and will equip G with a left-invariant Riemannian metric that is
also right K-invariant. Let A be the associated Laplace-Beltrami operator of G. Then
—pBa is an eigenvalue of aAg where a > 0. Specifically, for each A € ai. we have

Ba=a(A? + o),

where the norm is that induced on a;. by the Killing form (see [20, page 427]). We
define B, = |41 + |p|*.

ProrosiTioN 5.1. There exists K > 0 such that for all A € a*,
mal < K(1+ 127 + |o*).

Proor. Let U be a coordinate neighbourhood of e in G and write

f (1 = ga(m)v(dr) = f (1 = ga(m)v(d7) + f (1 = ga(0))v(d1).
G—{e} U—{e} uc
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Since ¢, is positive definite we have sup,.;|pi(0)|<¢pi(e)=1, and so
fo [T = pa(D)Iv(dT) < 2v(U°) < 00. Using a Taylor series expansion as in [28, page 13]
and the fact that X;¢,(e) = 0 for each 1 <i < n, we see that for each 7 € U there exists
7’ € U such that

1 = (1) = =3 X (DX (DX X jpa(t).
Arguing as in [29, Proof of Lemma 1], we apply a Schauder estimate to the equation
Agp, = —ﬁj@ to deduce that for each 1 < i, j < n there exists C;; > 0 so that

IX;X jpa(7)| < Cij(1 + B2) sup (o)

oeG
< Cij(l +ﬁ,1).

Hence, we have

1+8; & o
| 1= gi@han) < Py [ waowoan

i,j=1 U—{e}
1481 % : <N
< zﬂ ”(Z c?j)2 f > A @Pv(dn) <,
ij=1 U-{e} i
and the required result follows easily from here. O

If A€ a* and (u, t > 0) is symmetric, it is easily verified that 1, is real-valued and
nonnegative. Indeed from (5.5) and (5.2) we obtain

mi =B+ fG . f (1 = cos((A + p)(H(kr))) dkv(do).
—{e K

Let C.(K\G/K) denote the subspace of C.(G) which comprises K-bi-invariant
functions. If f € C.(K\G/K), its spherical transform is the mapping f:a; —C
defined by

Q)= fG f()$_1(o) do. (5.6)

We have the key Paley—Wiener type estimate that for each N € Z, there exists
Cy > 0 such that _
[F(D] < Cy(1 + [A)~N e, (5.7)
where R > 0 (see [20, page 450]).
We define the Plancherel measure w on a* by the prescription

w(dA) = kle(D)? dA,

*

where ¢ :aj, — C is Harish-Chandra’s c-function. We will not require the precise
definition of ¢ nor the value of the constant x > 0; however, we will find a use for
the estimate

(DI < C1 + Gl (5.8)
for all A€ a*, where C;,C; >0 and 2p =dim(N). This result follows from [20,
Proposition 7.2, page 450 and Equation (16) therein on page 451].
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By [20, Theorem 7.5, page 454] we have the Fourier inversion formula for f €
CZ(K\G/K),

flo)= f T)ga(@)ada), (5.9)

which holds for all o € G, and the Plancherel formula,

[ rordr = [ iFro@p.
G a*
By polarisation we obtain the Parseval identity for f, g € C°(K\G/K),

fr &) =, 2,

where (f,2) := [.. f(Dg(Dw(dA). Although the spherical transform f — f extends to
a unitary transformation from L?>(K\G/K) to a suitable space of functions on a* we
cannot assume that its precise form extends beyond the functions of compact support.
We will have more to say about this later in a special case that will be important for us.

The next result is analogous to the pseudo-differential operator representations
obtained in Euclidean space in [2, Theorem 3.3.3] (see also [3] for extensions to
compact groups).

THEOREM 5.2. For each o € G, f € CZ(K\G/K)

L T:f(o)= f J"\(/l)qf)/l(O')e_’”"w(d/l), for each t > 0.
2 A== [ Fsimota
Proor.

1. Applying Fourier inversion (5.9) in (3.1) and using Fubini’s theorem, we obtain

T.f() = f * fG FOSA@ D dDIdd)

= f fG f f $a(okT) dipt(dT)w(dD)
a* K

= [ Foie [ oxomtan)otan

= f i) M w(d),

where we have used the left K-invariance of y;, (5.1) and (5.4).
2. We have

e _ |

1 -
L af(o) = tim f ( JFL0p (eI da
K t—0 a* t

=~lim [ e F(D) (o)D) dA,

t—0

where 0 < 6, < 1 foreach A€ a*, t> 0.
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The required result follows by Lebesgue’s dominated convergence theorem. To see
this, first observe that for all A € a*, > 0, since Re(1;) > 0, we have |e %] < 1 and
so by Proposition 5.1 for each # > 0

| e g @i da< & [ s + b R0l da

The integral on the right-hand side is easily seen to be finite by using (5.8) and
taking N to be sufficiently large in (5.7). O

Note. Based on the results of Theorem 5.2 we may write
Tf)=e™f) and AfA)=-nf),

forallt>0,1€a".
We will need to extend the precise form of Parseval’s formula to include the range
of T; acting on C.(K\G/K).

THEOREM 5.3. Forall f, g € C.(K\G/K),t>0,
(T.f, ) =(T.}, 3 (5.10)

Proor. Using the result of Theorem 5.2(1), Fubini’s theorem, the fact that for all
oceG,1ea, ¢ (o) =¢_, (o) and (5.6), we find that for all f, g € C.(K\G/K), t >0,

@t = [ ([ Fvssor o)) dr

- [ [ sow-sodeoran

- f M FNFDw(dA)

ar
= (1., 3.
This completes the proof of the theorem. O

Now assume that the convolution semigroup (u;, t > 0) is symmetric, that is y, = i,
for all r>0. The space CZ°(K\G/K) is a dense linear subspace of the Hilbert
space L>(K\G/K) of K-bi-invariant square integrable functions on G. We consider
the restriction therein of the Dirichlet form &, where &(f):=|I(=A):f|* on
D= Dom(ﬂ%).

CoroLLARY 5.4. For each f, g € C7(K\G/K) we have

&9 = [ FnFDop.

Proor. This follows from differentiating both sides of (5.10) using Theorem 5.2(1). O
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5.2. Harmonic transience. Let (1, t > 0) be an arbitrary K-bi-invariant convolution
semigroup in G. As is shown in [28, Theorem 2.2, page 43], we obtain a Feller
semigroup (S (¢), t > 0) on G/K by the prescription:

(SOf) o =T®)(f o)

for all feCo(G/K). We define the potential operator N on Co(G/K) by the

prescription
!

Nf :=lim S.fdu

—00 0

for all
!
£ € Dom(N) := { f € Co(G/K): lim f Suf du exists in CU(G/K)}.
—00 0

We say that (i, t > 0) is integrable if C.(G/K)C Dom(N). By the same arguments
as are presented in [9, Lemmas 12.2 and 13.19 and Proposition 13.21], it follows
that integrability implies transience. Berg and Faraut [8] have shown that if G/K is
irreducible then the projection to G/K of every bi-invariant convolution semigroup on
G is integrable and hence all of these semigroups of measures are transient. It then
follows that (&, D) is a transient Dirichlet space. In [23, Theorem 7.3] this result is
extended to the case where the symmetric space is no longer required to be irreducible.
Furthermore, it is shown that the associated Feller semigroup is mean ergodic, that is,
limy_o(1/T) fOT S.f du exists for all f e Cy(G/K).
We say that (u,, t > 0) is harmonically transient if the mapping

1
Re(172)

from a* to R is locally integrable with respect to the Plancherel measure w.

Note that the result of (i) in Theorem 5.5 below is well known to be a necessary
and sufficent condition for a transient Dirichlet space (see [13]); however, we include
a short proof to make the paper more self-contained.

A—

TueoreM 5.5. If (G, K) is an irreducible Riemannian symmetric pair and (i, t > 0) is
a symmetric K-bi-invariant convolution semigroup (with ay < 0) then

() [TAT.f, f)di < oo forall f € Cor(K\G/K);
(1)  (us, t = 0) is harmonically transient.

Proor.
(i) Let f € C.+(K\G/K) and let C = supp(f) then

fo (T:f. ) dt:fcf(O')fGl(rlc(T)f(O'T)V(dT)dO'-
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Define C7!C := {oc~!1; 0, 7 € C}. Since C~!C is the image of the continuous mapping
from CxC to G which takes (o, 7) to o', it is compact. It follows that
SUP,cc V(c~'C) < V(C™'C) < o0 as (u;, t > 0) is transient, and so the mapping o —
fG 1y-1c() f(oT)V(d7) is bounded. The required result follows.

(i1) This is proved by a similar method to the Euclidean space case (see [15,
Example 1.5.2, pages 42-43]). We include it for the convenience of the reader, noting
that it was for this specific purpose that we established Theorem 5.3. We choose
f € C.+(K\G/K) such that (1) > 1 for all A in some compact neighbourhood A of a*.
Then using Theorems 5.2(1) and 5.3 we get

N2 N2
fw(dﬂ) < |/ (D w(d/l)sf [f(DI w(d)
A T A a1

=f0 <T},f>dz=f0 (T.f, ) dt < .

This completes the proof of the theorem. O

CorOLLARY 5.6. If (G, K) is an irreducible Riemannian symmetric pair and (u;, t > 0)
is a K-bi-invariant convolution semigroup then it is harmonically transient.

Proor. Let (u,t>0) be an arbitrary bi-invariant convolution semigroup with
characteristic exponent 77,. We associate to it a symmetric bi-invariant convolution
semigroup (ufR), t > 0) by the prescription ,uﬁR) =, * [1;. It follows easily from (5.3)
and (5.4) that it has characteristic exponent 2Re(r7,) and using this fact we can
immediately deduce that (u,, t > 0) is harmonically transitive by using Theorem 5.5. O
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