Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T08:49:22.577Z Has data issue: false hasContentIssue false

Chapter 10 - Corticothalamic Feedback in Vision

from Section 5: - Sensory Processing

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The cortex and thalamus are richly interconnected by feedforward and feedback pathways. For vision, the lateral geniculate nucleus (LGN) of the dorsal thalamus supplies the primary visual cortex with synaptically strong feedforward input that carries information about the external environment. The cortex, in turn, sends an even greater number of axons back to the LGN; however, these corticogeniculate inputs are relatively weak. Based on this anatomy, the cortex appears to be able to modulate the nature of the signals it receives from the LGN, potentially to meet the ongoing processing needs of the cortex. This chapter examines the relationship between the feedforward and feedback pathways interconnecting the LGN and visual cortex, with an emphasis on their organization with respect to the parallel processing streams originating in the retina. It also explores the influence of corticogeniculate feedback on vision.

Type
Chapter
Information
The Thalamus , pp. 206 - 213
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alitto, H. J., Moore, B. D., Rathbun, D. L., & Usrey, W. M. (2011). A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. Journal of Physiology, 589(Pt 1), 8799.Google Scholar
Alitto, H. J., Rathbun, D. L., Vandeleest, J. J., Alexander, P. C., & Usrey, W. M. (2019). The augmentation of retinogeniculate communication during thalamic burst mode. Journal of Neuroscience, 39, 56975710.Google Scholar
Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences of the United States of America, 104, 16851690.Google Scholar
Andolina, I. M., Jones, H. E., & Sillito, A.M. (2013). Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of Neurophysiology, 109(3):889–99.CrossRefGoogle ScholarPubMed
Bal, T., Debay, D., & Destexhe, A. (2000). Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. Journal of Neuroscience, 20, 74787488.CrossRefGoogle ScholarPubMed
Bastos, A. M., Briggs, F., Alitto, H. J., Mangun, G. R., & Usrey, W. M. (2014). Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience, 34(22), 76397644.Google Scholar
Béhuret, S., Deleuze, C., & Bal, T. (2015). Corticothalamic synaptic noise as a mechanism for selective attention in thalamic neurons. Frontiers in Neural Circuits, 9, 80.Google Scholar
Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., & Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. Journal of Neuroscience, 35(29), 1052310534.Google Scholar
Blasdel, G. G., & Lund, J. S. (1983). Termination of afferent axons in macaque striate cortex. Journal of Neuroscience, 3, 13891413.Google Scholar
Blumenfeld, H., & McCormick, D.A. (2000). Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. Journal of Neuroscience, 20, 51535162.Google Scholar
Born, G., Erisken, S., Schneider, F. A., Klein, A., Mobarhan, M. H., Lao, C. L., Spacek, M. A. Einevoll, G. T., & Busse, L. (2020). Corticothalamic feedback sculpts visual spatial integration in mouse thalamus. bioRxiv. doi:10.1101/2020.05.19.104000.CrossRefGoogle Scholar
Briggs, F., Kiley, C. W., Callaway, E. M., & Usrey, W. M. (2016). Morphological substrates for parallel streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey. Neuron, 90(2), 388399.CrossRefGoogle ScholarPubMed
Briggs, F., & Usrey, W. M. (2005). Temporal properties of feedforward and feedback pathways between the thalamus and visual cortex in the ferret. Thalamus and Related Systems, 3(2), 133139.Google Scholar
Briggs, F., & Usrey, W. M. (2009) Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62, 135146.CrossRefGoogle ScholarPubMed
Brody, C. D. (1998). Slow covariations in neuronal resting potentials can lead to artefactually fast cross-correlations in their spike trains. Journal of Neurophysiology, 80, 33453351.Google Scholar
Calkins, D. J., Sappington, R. M., & Hendry, S. H. (2005). Morphological identification of ganglion cells expressing the alpha subunit of type II calmodulin-dependent protein kinase in the macaque retina. Journal of Comparative Neurology, 481(2), 94209.Google ScholarPubMed
Casagrande, V. A., Yazar, F., Jones, K. D., & Ding, Y. (2007). The morphology of the koniocellular axon pathway in the macaque monkey. Cerebral Cortex, 17(10), 23342345.CrossRefGoogle ScholarPubMed
Cleland, B. G. (1986). The dorsal lateral geniculate nucleus of the cat. In Pettigrew, J. D., Sanderson, K. J., & Levick, W. R. (Eds.), Visual Neuroscience (pp. 111120). London: Cambridge University Press.Google Scholar
Cleland, B. G., Dubin, M. W., & Levick, W.R. (1971a). Simultaneous recording of input and output of lateral geniculate neurones. Nature New Biology 231, 191192.Google Scholar
Cleland, B. G., Dubin, M. W., & Levick, W.R. (1971b). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. Journal of Physiology, 217, 473496.CrossRefGoogle ScholarPubMed
Conley, M., & Raczkowski, D. (1990). Sublaminar organization within layer VI of the striate cortex in Galago. Journal of Comparative Neurology, 302(2), 425436.Google Scholar
Croner, L. J. & Kaplan, E. (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35, 724.Google Scholar
Destexhe, A., Contreras, D., & Steriade, M. (1999). Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience, 92, 427443.Google Scholar
Diamond, I. T., Conley, M., Itoh, K., & Fitzpatrick, D. (1985). Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus. Journal of Comparative Neurology, 242, 584610.CrossRefGoogle ScholarPubMed
Erisir, A., Van Horn, S. C., Bickford, M. E., & Sherman, S. M. (1997). Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. Journal of Comparative Neurology, 377, 535549Google Scholar
Erisir, A., Van Horn, S. C., & Sherman, S. M. (1997). Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proceedings of the National Academy of Science, 94, 15171520.Google Scholar
Fitzpatrick, D., Carey, R. G., and Diamond, I. T. (1980). The projection of the superior colliculus upon the lateral geniculate body in Tupaia glis and Galago senegalensis. Brain Research, 194, 494499.CrossRefGoogle ScholarPubMed
Fitzpatrick, D., Itoh, K., & Diamond, I. T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). Journal of Neuroscience, 3(4), 673702.Google Scholar
Fitzpatrick, D., Lund, J. S., & Blasdel, G. G. (1985). Intrinsic connections of macaque striate cortex. Afferent and efferent connections of lamina 4C. Journal of Neuroscience, 5, 33293349.Google Scholar
Fitzpatrick, D., Usrey, W. M., Schofield, B. R., & Einstein, G. (1994). The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Visual Neuroscience, 11, 307315.CrossRefGoogle ScholarPubMed
Freund, T. F., Martin, K. A. C., & Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. Journal of Comparative Neurology, 242, 263274.Google Scholar
Friedlander, M. J., Lin, C.-S., Stanford, L. R., & Sherman, S. M. (1981). Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. Journal of Neurophysiology, 46, 80129.CrossRefGoogle ScholarPubMed
Gilbert, C. D., & Kelly, J. P. (1975). The projections of cells in different layers of the cat’s visual cortex. Journal of Comparative Neurology, 163, 81106.Google Scholar
Graham, J. (1977). An autoradiographic study of the efferent connections of the superior colliculus of the cat. Journal of Comparative Neurology, 173, 629654.CrossRefGoogle ScholarPubMed
Guillery, R. W. (1969). A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Zeitschrift für Zellforschung und Mikroskopische Anatomie. 96, 3948Google Scholar
Hasse, J. M., Bragg, E. M., Murphy, A. J., & Briggs, F. (2019). Morphological heterogeneity among corticogeniculate neurons in ferrets: quantification and comparison with a previous report in macaque monkeys. Journal of Comparative Neurology, 527(3), 546557.CrossRefGoogle ScholarPubMed
Hasse, J. M., & Briggs, F. (2017). Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Proceedings of the National Academy of Science USA, 114(30), E6222E6230.Google Scholar
Headon, M. P., Sloper, J. J., Hiorns, R. W., & Powell, T. P. S. (1985). Sizes of neurons in the primate lateral geniculate nucleus during normal development. Developmental Brain Research, 18, 5156.CrossRefGoogle Scholar
Hendrickson, A. E., Wilson, J. R., & Ogren, M. P. (1978). The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. Journal of Comparative Neurology, 182, 123136.Google Scholar
Hendry, S. H. C., Hockfield, S., Jones, E. G., & McKay, R. (1984). Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat. Nature, 307, 267269.Google Scholar
Hockfield, S., & Sur, M. (1990). Monoclonal antibody cat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 300, 320330.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. Journal of Physiology, 155(2), 385–98.CrossRefGoogle ScholarPubMed
Huberman, A. D., & Niell, C. M. (2011). What can mice tell us about how vision works? Trends in Neuroscience, 34(9), 464473.Google Scholar
Humphrey, A. L., Sur, M., Uhlrich, D. J., & Sherman, S. M. (1985a). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology, 233, 159189.CrossRefGoogle ScholarPubMed
Humphrey, A. L., Sur, M., Uhlrich, D. J., & Sherman, S. M. (1985b). Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17–18 border region, and to both areas 17 and 18. Journal of Comparative Neurology, 233, 190212.Google Scholar
Ichida, J. M., Mavity-Hudson, J. A., & Casagrande, V. A. (2014). Distinct patterns of corticogeniculate feedback to different layers of the lateral geniculate nucleus. Eye and Brain, 2014(6 Suppl 1), 5773.Google Scholar
Iwai, L., Ohashi, Y., van der List, D., Usrey, W. M., Miyashita, Y., & Kawasaki, H. (2013). FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cerebral Cortex, 23(9), 22042212.Google Scholar
Jahnsen, H., & Llinás, R. (1984a). Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology, 349, 205226.Google Scholar
Jahnsen, H., & Llinás, R. (1984b). Ionic basis for the electroresponseiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. Journal of Physiology, 349, 227247.Google Scholar
Jones, E. G. (2007). The Thalamus: Second Edition. Cambridge, UK: Cambridge University Press.Google Scholar
Jones, H. E., Andolina, I. M., Oakely, N. M., Murphy, P. C., & Sillito, A. M. (2000). Spatial summation in lateral geniculate nucleus and visual cortex. Experimental Brain Research, 135, 279284.Google Scholar
Kaplan, E., & Shapley, R. (1984). The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Experimental Brain Research, 55, 111116.Google Scholar
Katz, L. C. (1987). Local circuitry of identified projection neurons in cat visual cortex brain slices. Journal of Neuroscience, 4, 1223–49.Google Scholar
Lachica, E. A., & Casagrande, V. A. (1992). Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. Journal of Comparative Neurology, 319(1), 141158.CrossRefGoogle Scholar
Lachica, E. A., & Casagrande, V. A. (1993). The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus. Visual Neuroscience, 10(3), 403418.Google Scholar
Leventhal, A. G. (1979). Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex. Experimental Brain Research, 37(2), 349372.Google Scholar
Levitt, J. B., Schumer, R. A., Sherman, S. M., Spear, P. D., & Movshon, J. A. (2001). Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. Journal of Neurophysiology, 85, 21112129.Google Scholar
Li, L., & Ebner, F. F. (2007). Cortical modulation of spatial and angular tuning maps in the rat thalamus. Journal of Neuroscience, 27, 167179.CrossRefGoogle ScholarPubMed
Livingstone, M. S., & Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual information in the cat. Nature, 291(5816), 554561.Google Scholar
Lund, J. S., & Boothe, R. (1975). Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology, 159, 305334.Google Scholar
Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., & Fuchs, A. F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology, 164, 287304.Google Scholar
Mastronarde, D. N. (1987). Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. Journal of Neurophysiology, 57, 381413Google Scholar
Maunsell, J. H. R., Ghose, G. M., Assad, J. A., McAdams, C. J., Boudreau, C. E., & Noerager, B. D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience, 16, 114.Google Scholar
McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2006). Attentional modulation of thalamic reticular neurons. Journal of Neuroscience, 26, 44444450.Google Scholar
McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456, 391394.Google Scholar
Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? Annual Reviews in Neuroscience, 16, 369402.Google Scholar
Murphy, A. J., Shaw, L., Hasse, J. M., Goris, R. L. T., & Briggs, F. (2020). Optogenetic activation of corticogeniculate feedback stabilizes response gain and increases information coding in LGN neurons. Computational Neuroscience. Online ahead of print. doi:10.1007/s10827-020-00754-5.Google Scholar
Murphy, P. C., & Sillito, A. M. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. Journal of Neuroscience, 16, 11801192.CrossRefGoogle Scholar
Murphy, P. C., & Sillito, A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature, 329, 727729.CrossRefGoogle ScholarPubMed
O’Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience, 5, 12031209.Google Scholar
Olsen, S. R., Bortone, D., Adesnik, H., & Scanziani, M. (2012). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 4752.Google Scholar
Ortuño, T. Grieve, K. L., Cao, R., Cudeiro, J., & Rivadulla, C. (2014). Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback. Frontiers in Behavioral Neuroscience, 8, 198.Google Scholar
Percival, K. A., Koizumi, A., Masri, R. A., Buzás, P., Martin, P. R., & Grünert, U. (2014). Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. Journal of Neuroscience, 34(11), 38213825.Google Scholar
Przybyszewski, A. W., Gaska, J. P., Foote, W., & Pollen, D.A. (2000). Striate cortex increases contrast gain of macaque LGN neurons. Visual Neuroscience, 17(4), 485494.Google Scholar
Rathbun, D. L., Alitto, H. J., Warland, D. K., & Usrey, W. M. (2016) Stimulus contrast and retinogeniculate signal processing. Frontiers in Neural Circuits, 10, 8. doi:10.3389/fncir.2016.00008.Google Scholar
Rathbun, D. L., Warland, D. K., & Usrey, W. M. (2010). Spike timing and information transmission at retinogeniculate synapses. Journal of Neuroscience, 30, 1355813566.Google Scholar
Roy, S. A., & Alloway, K. D. (2001). Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. Journal of Neuroscience, 21, 24622473.Google Scholar
Saul, A. B., & Humphrey, A. L. (1990). Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. Journal of Neurophysiology, 64, 206224.CrossRefGoogle ScholarPubMed
Schiller, P. H., & Logothetis, N. K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13, 392398.Google Scholar
Schiller, P. H., & Malpeli, J. G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology, 41,788797.Google Scholar
Shapley, R. M. (1992). Parallel retinocortical channels: X and Y and P and M. In Brannan, J. (Ed.), Applications of Parallel Processing in Vision (pp. 336). New York: Elsevier.Google Scholar
Sherman, S. M. (1985). Functional organization of the W-, X-, and Y-cell pathways in the cat: a review and hypothesis. In Sprague, J. M. & Epstein, A. N. (Eds.), Progress in Psychobiology and Physiological Psychology, Vol. 11 (pp. 233314). Orlando: Academic Press.Google Scholar
Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neuroscience, 24(2), 122126.Google Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proceedings of the National Academy of Science USA, 95(12), 71217126.Google Scholar
Sherman, S. M., & Guillery, R. W. (2009). Exploring the Thalamus and Its Role in Cortical Function. 2nd ed. Cambridge, MA: MIT Press.Google Scholar
Sillito, A. M., & Jones, H. E. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357, 17391752.Google Scholar
Sillito, A. M., Jones, H. E., Gerstein, G. L., & West, D. C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature, 369, 479482.Google Scholar
Sincich, L. C., Adams, D. L., Economides, J. R., & Horton, J. C. (2007). Transmission of spike trains at the retinogeniculate synapse. Journal of Neuroscience, 27, 26832692.Google Scholar
So, Y. T., & Shapley, R. (1979). Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs. Experimental Brain Research, 36, 533550.Google Scholar
Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends in Neuroscience, 28, 317324.Google Scholar
Stoelzel, C. R., Bereshpolova, Y., Alonso, J.-M., & Swadlow, H. A. (2017). Axonal conduction delays, brain state, and corticogeniculate communication. Journal of Neuroscience, 37(26), 63426358.Google Scholar
Stone, J. (1983). Parallel Processing in the Visual System. New York: Plenum Press.Google Scholar
Swadlow, H. A., & Gusev, A.G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4, 402408.CrossRefGoogle Scholar
Szmajda, B. A., Grünert, U., & Martin, P. R. (2008). Retinal ganglion cell inputs to the koniocellular pathway. Journal of Comparative Neurology, 510(3), 251268.Google Scholar
Temereanca, S., & Simons, D.J. (2004). Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system. Neuron, 41, 639651.Google Scholar
Troy, J. B., & Lennie, P. (1987). Detection latencies of X and Y type cells of the cat’s dorsal lateral geniculate nucleus. Experimental Brain Research, 65, 703706.Google Scholar
Tsumoto, T., & Suda, K. (1980). Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. Journal of Comparative Neurology, 193, 223236.Google Scholar
Usrey, W. M., & Alitto, H. J. (2015). Visual functions of the thalamus. Annual Review of Vision Science, 1, 351371.Google Scholar
Usrey, W. M., Alonso, J. M., & Reid, R.C. (2000). Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. Journal of Neuroscience, 20, 54615467.Google Scholar
Usrey, W. M., & Fitzpatrick, D. (1996). Specificity in the axonal connections of layer VI neurons in tree shrew striate cortex: evidence for distinct granular and supragranular systems. Journal of Neuroscience, 16(3), 12031218.CrossRefGoogle ScholarPubMed
Usrey, W. M., Muly, E., & Fitzpatrick, D. (1992). Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew. Journal of Comparative Neurology 319, 159171.Google Scholar
Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395, 384387.Google Scholar
Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82, 35273540.Google Scholar
Usrey, W. M., & Sherman, S. M. (2019) Corticofugal circuits: Communication lines from the cortex to the rest of the brain. Journal of Comparative Neurology, 527, 640650.Google Scholar
Wang, W., Andolina, I. M., Lu, Y., Jones, H. E., & Sillito, A. M. (2018). Focal gain control of thalamic visual receptive fields by layer 6 corticothalamic feedback. Cerebral Cortex, 28(1), 267280.Google Scholar
Weyand, T. G. (2007). Retinogeniculate transmission in wakefulness. Journal of Neurophysiology, 98, 769785.Google Scholar
Xu, X., Ichida, J. M., Allison, J. D., Boyd, J. D., Bonds, A. B., & Casagrande, V. A. (2001). A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Journal of Physiology, 531(Pt 1), 203218.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×